

FCC TEST REPORT

Test report On Behalf of Dongguan Taiyin Electronic & Technology Co.,Ltd For Wireless bluetooth earphones Model No: F9,X19,X21,X27,X29,T15

FCC ID: 2AVRU-F9

Prepared for :	Dongguan Taiyin Electronic & Technology Co.,Ltd	
	The 5th floor, No. B buliding, Chanan Road No. 158, Chashan	
	Town,Dongguan,Guangdong,China	

Prepared By :Shenzhen HUAK Testing Technology Co., Ltd.1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street,
Bao'an District, Shenzhen City, China

Date of Test:January 2, 2020~ January 10, 2020Date of Report:January 10, 2020Report Number:HK2002260178-E

TEST RESULT CERTIFICATION

Applicant's name:	Dongguan Taiyin Electronic & Technology Co.,Ltd
Address:	The 5th floor,No. B buliding,Chanan Road No.158,Chashan Town,Dongguan,Guangdong,China
Manufacture's Name:	Dongguan Taiyin Electronic & Technology Co.,Ltd
Address:	The 5th floor,No. B buliding,Chanan Road No.158,Chashan Town,Dongguan,Guangdong,China
Product description	
Trade Mark:	N/A
Product name:	Wireless bluetooth earphones
Model No:	F9
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests	January 2, 2020~ January
Date of Issue	January 10, 2020

Test Result..... PASS

1

Testing Engineer

Bian

10, 2020

(Gary Qian)

Technical Manager

Edan Hu

(Eden Hu)

Authorized Signatory :

Jason Zhou

(Jason Zhou)

Revision History

Revision	Issue Date	Revisions	Revised By
00	January 10, 2020	Initial Issue	Jason Zhou

TABLE OF CONTENTS

Description	Page
1. GENERAL INFORMATION	5
1.1. Description of Device (EUT)	5
1.2 Support equipment List	
1.3 External I/O Cable	
1.4 Description of Test Facility	5
1.5 Statement of the Measurement Uncertainty	
1.6 Measurement Uncertainty	
1.7 Description of Test Modes	
2. TEST METHODOLOGY/	
2.1 EUT Configuration	
2.2 EUT Exercise	
2.3 General Test Procedures	
2.4. Test Sample	
3. SYSTEM TEST CONFIGURATION	
3.1 Justification	
3.2 EUT Exercise Software	
3.3 Special Accessories	
3.4 Block Diagram/Schematics	
3.5 Equipment Modifications 3.6 Test Setup	
4. SUMMARY OF TEST RESULTS	
5. SUMMARY OF TEST EQUIPMENT	10
6. MEASUREMENT RESULTS	
6.1 Peak Power	11
6.2 Frequency Separation and 20 dB Bandwidth	
6.3 Number of Hopping Frequency	
6.4 Time of Occupancy (Dwell Time)	
6.5 Conducted Spurious Emissions and Band Edges Test	
6.6 Restricted Band Emission Limit	
6.7. AC Power line conducted emissions	
6.8. Band-edge measurements for radiated emissions 6.9. Pseudorandom frequency hopping sequence	
6.10. Antenna requirement	
7. TEST SETUP PHOTOGRAPHS	
8.EXTERNAL PHOTOS OF THE EUT	
9.INTERIOR PHOTOS OF THE EUT	

1. GENERAL INFORMATION

1.1. Description or EUT	f Device (EUT) : Wireless bluetooth earphones	
Model Number	: F9, X19,X21,X27,X29	
Model Difference Declaration	. F9 and T15 are same except for the charging base, other models are same with F9 except for the model name.	
Test Model	: F9	
Power Supply	: DC 3.7V by battery	
Hardware version	: X18_K&M-2019-9-4	
Software version	: V5.0	
Bluetooth		
Bluetooth Version	: V5.0 +EDR[Use BR/EDR in this product]	
Frequency Range	: 2402-2480MHz	
Channel Number	: 79 Channels	
Modulation Technology	: GFSK, π/4-DQPSK, 8-DPSK	
Data Rates	: 1~3Mbps	
Antenna Type And Gain	: Internal Antenna 5.0dBi	
Note: Antenna postion refer to EUT Photos.		

1.2 Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate

1.3 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- $\ensuremath{\bigcirc}$ supplied by the lab

1.4 External I/O Cable

I/O Port Description	Quantity	Cable

1.5 Description of Test Facility

Designation Number: CN1229 Test Firm Registration Number: 616276

The 3m-Semi anechoic test site fulfills CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010

1.6 Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the HUAK quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.7 Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	±3.08dB	(1)
Radiation Uncertainty	:	30MHz~1000MHz	±4.42dB	(1)
		1GHz~40GHz	±4.06dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±2.23dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.8 Description of Test Modes

Bluetooth operates in the unlicensed ISM Band at 2.4GHz. The EUT works in the X-axis, Y-axis, Z-axis. The following operating modes were applied for the related test items. All test modes were tested, only the result of the worst case was recorded in the report.

Mode of Operations	Frequency Range (MHz)	Data Rate (Mbps)	
	2402	1/2/3	
Bluetooth	2441	1/2/3	
	2480	1/2/3	
For Conducted Emission			
Test Mode		TX Mode	
For Radiated Emission			
Test Mode		TX Mode	

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be TX(3Mbps-Low Channel).

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR PART 15C 15.207, 15.209, 15.247 and DA 00-705.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the normal operating mode for Hopping Numbers and Dwell Time test and a continuous transmits mode for other tests.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209, 15.247 under the FCC Rules Part 15 Subpart C.

2.3 General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013

2.4. Test Sample

The application provides 2 samples to meet requirement;

Sample Number	Description
Sample 1	Engineer sample – continuous transmit
Sample 2	Normal sample – Intermittent transmit

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a continuous transmits condition.

3.2 EUT Exercise Software

The system was configured for testing in a continuous transmits condition and change test channels by software (BT_Tool V1.0.6) provided by application.

3.3 Special Accessories

No.	Equipment	Manufacturer	Model No.	Serial No.	Length	shielded/ unshielded	Notes
1	PC	ASUS	X454L	15105-0038A1 00	/	/	/

3.4 Block Diagram/Schematics

Please refer to the related document.

3.5 Equipment Modifications

Shenzhen HUAK Testing Technology Co., Ltd. has not done any modification on the EUT.

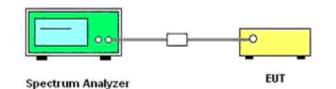
3.6 Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

	Applied Standard: FCC Part 15 Subpart C					
FCC Rules	Description of Test	Test Sample	Result			
§15.247(b)(1)	Maximum Conducted Output Power	Sample 1	Compliant			
§15.247(c)	Frequency Separation And 20 dB Bandwidth	Sample 1	Compliant			
§15.247(a)(1)(ii)	Number Of Hopping Frequency	Sample 2	Compliant			
§15.247(a)(1)(iii)	Time Of Occupancy (Dwell Time)	Sample 1	Compliant			
§15.209, §15.247(d)	Radiated and Conducted Spurious Emissions	Sample 1	Compliant			
§15.205	Emissions at Restricted Band	Sample 1	Compliant			
§15.207(a)	Conducted Emissions	N/A	Compliant			
§15.203	Antenna Requirements	Sample 1	Compliant			
§15.247(i)§2.1093	RF Exposure	N/A	Compliant			

5. SUMMARY OF TEST EQUIPMENT


Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 26, 2019	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 26, 2019	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 26, 2019	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 26, 2019	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 26, 2019	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 26, 2019	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 26, 2019	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 26, 2019	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 26, 2019	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 26, 2019	1 Year
11.	Broadband Horn Antenna	Schewarzbeck	BBHA 9170	HKE-017	Dec. 26, 2019	1 Year
12.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Dec. 26, 2019	1 Year
13.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 26, 2019	1 Year
14.	EMI Test Software EZ-EMC	Tonscend	JS1120-B	HKE-083	Dec. 26, 2019	N/A
15.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 26, 2019	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Dec. 26, 2019	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Dec. 26, 2019	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 26, 2019	3 Year
19.	Horn Antenna	ETS	3117	HKE-040	Dec. 26, 2019	1 Year
20.	RF Cable(below 1GHz)	HUBER+SUHNER	RG214	HKE-055	Dec. 26, 2019	1 Year
21.	RF Cable(above 1GHz)	HUBER+SUHNER	RG214	HKE-056	Dec. 26, 2019	1 Year

6. MEASUREMENT RESULTS

6.1 Peak Power

6.1.1 Block Diagram of Test Setup

6.1.2 Limit

According to §15.247(b)(1), For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

6.1.3 Test Procedure

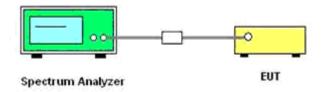
The transmitter output is connected to the Spectrum Analyzer.

6.1.4 Test Results

Temperature	22.7 ℃	Humidity	50%
Test Engineer	Gary Qian	Configurations	BT

Remark:

- 1. Test results including cable loss;
- 2. please refer to following plots;
- 3. Measured output power at difference Packet Type for each mode and recorded worst case for each mode.
- 4. Plesase See appendix for Peak Output Power test data



6.2 Frequency Separation and 20 dB Bandwidth

6.2.1 Limit

According to §15.247(a) (1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

6.2.2 Block Diagram of Test Setup

6.2.3 Test Procedure

Frequency separation test procedure :

1). Place the EUT on the table and set it in transmitting mode.

2). Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.

3). Set center frequency of Spectrum Analyzer = middle of hopping channel.

4). Set the Spectrum Analyzer as RBW = 100 kHz, VBW = 300 kHz, Span = wide enough to capture the peaks of two adjacent channels, Sweep = auto.

5). Max hold, mark 2 peaks of hopping channel and record the 2 peaks frequency.

20dB bandwidth test procedure :

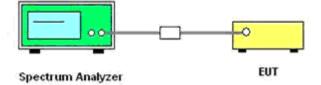
- 1). Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel.
- 2). RBW \geq 1% of the 20 dB bandwidth, VBW \geq RBW.
- 3). Detector function = peak.
- 4). Trace = max hold.

6.2.4 Test Results

Temperature	22.7°C	Humidity	50%
Test Engineer	Gary Qian	Configurations	BT

Remark:

- Test results including cable loss;
 please refer to following plots;
 Measured at difference Packet Type for each mode and recorded worst case for each mode.
 Plesase See appendix for 20dB Bandwidth test data
- 5. Plesase See appendix for Carrier Frequency Separation test data



6.3 Number of Hopping Frequency

6.3.1 Limit

According to §15.247(a)(1)(ii) or A8.1 (d), Frequency hopping systems operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels.

6.3.2 Block Diagram of Test Setup

6.3.3 Test Procedure

1). Place the EUT on the table and set it in transmitting mode.

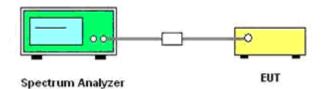
2). Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.

- 3). Set Spectrum Analyzer Start=2400MHz, Stop = 2483.5MHz, Sweep = auto.
- 4). Set the Spectrum Analyzer as RBW, VBW=1MHz.
- 5). Max hold, view and count how many channel in the band.

6.3.4 Test Results

Temperature	22.7°C	Humidity	50%
Test Engineer	Gary Qian	Configurations	BT

Plesase See appendix for Hopping Channel Number test data



6.4 Time of Occupancy (Dwell Time)

6.4.1 Limit

According to §15.247(a)(1)(iii) or A8.1 (d), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

6.4.2 Block Diagram of Test Setup

6.4.3 Test Procedure

1). Place the EUT on the table and set it in transmitting mode.

2). Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.

- 3). Set center frequency of Spectrum Analyzer = operating frequency.
- 4). Set the Spectrum Analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.
- 5). Repeat above procedures until all frequency measured was complete.

6.4.4 Test Results

The Dwell Time=Burst Width*Total Hops. The detailed calculations are showed as follows:

The duration for dwell time calculation: 0.4[s]*hopping number=0.4[s]*79[ch]=31.6[s*ch];

The burst width [ms/hop/ch], which is directly measured, refers to the duration on one channel hop.

The hops per second for all channels: The selected EUT Conf uses a slot type of 5-Tx&1-Rx and a hopping rate of 1600 [ch*hop/s] for all channels. So the final hopping rate for all channels is 1600/6=266.67 [ch*hop/s]

The hops per second on one channel: 266.67 [ch*hops/s]/79 [ch]=3.38 [hop/s];

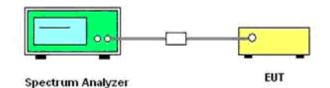
The total hops for all channels within the dwell time calculation duration: 3.38 [hop/s]*31.6[s*ch]=106.67 [hop*ch];

The dwell time for all channels hopping: 106.67 [hop*ch]*Burst Width [ms/hop/ch].

Temperature	22.7°C	Humidity	50%
Test Engineer	Gary Qian	Configurations	BT

Remark:

- 1. Test results including cable loss;
- 2. please refer to following plots;
- 3. Measured at difference Packet Type for each mode and recorded woest case for each mode.
- 4. Dwell Time Calculate formula:
 - DH5: Dwell time=Pulse Time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second
- 5. Measured at low, middle and high channel, recorded worst at middle channel;
- 6. Plesase See appendix for Dwell Time test data



6.5 Conducted Spurious Emissions and Band Edges Test

6.5.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

6.5.2 Block Diagram of Test Setup

6.5.3 Test Procedure

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 KHz. The video bandwidth is set to 300 KHz.

Measurements are made over the 9 kHz to 26.5GHz range with the transmitter set to the lowest, middle, and highest channels

6.5.4 Test Results of Conducted Spurious Emissions

No non-compliance noted. Only record the worst test result in this report. The test data refer to the following page.

Temperature	22.7°C	Humidity	50%
Test Engineer	Gary Qian	Configurations	BT

Test Mode	Channel	Frequency (MHz)	Measured Frequency Range	Spurious RF Conducted Emission (dBc)	Limits (dBc)	Verdict
	0	2402	9 KHz – 26.5 GHz	<-20		
GFSK	39	2441	9 KHz – 26.5 GHz	<-20	-20	PASS
	78	2480	9 KHz – 26.5 GHz	<-20		
	0	2402	9 KHz – 26.5 GHz	<-20		
π/4-DQPSK	39	2441	9 KHz – 26.5 GHz	<-20	-20	PASS
	78	2480	9 KHz – 26.5 GHz	<-20		
	0	2402	9 KHz – 26.5 GHz	<-20		
8DPSK	39	2441	9 KHz – 26.5 GHz	<-20	-20	PASS
	78	2480	9 KHz – 26.5 GHz	<-20		

Remark:

- Test results including cable loss;
 please refer to following plots;
 Measured at difference Packet Type for each mode and recorded worst case for each mode.
 Plesase See appendix for Band-edge Emissions test data

5. Plesase See appendix for Conducted Spurious Emissions test data

6.6 Restricted Band Emission Limit

6.6.1. Standard Applicable

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz		MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(\2\)	
13.36-13.41				

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

6.6.2. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

6.6.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

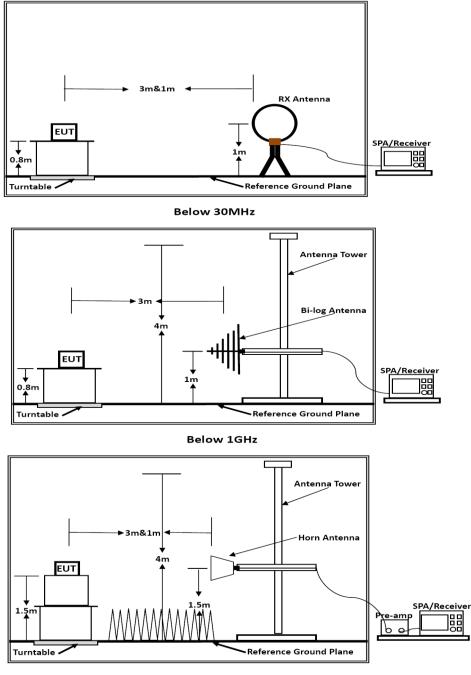
Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarizations of the antenna.


Final measurement:

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

6.6.4. Test Setup Layout

Above 1GHz

Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1.5m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

6.6.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.6.6. Results of Radiated Emissions (9 kHz~30MHz)

Temperature	22.7	°C	umidity		52%				
Test Engineer	Test Engineer Gary C		Configurations			BT			
Freq.	Level	Over	Limit	Over Limit		Remark			
(MHz)	(dBuV)	(d	B)	(dBuV)		Remain			
-	-	-	See N		See Note				

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

PASS.

Only record the worst test result in this report.

The test data please refer to following page.

Below 1GHz (Worst case: 8DPSK, Low Channel)

***Note:

4

5

6

300.145

458.255

670.685

17.36

17.38

21.18

Pre-scan all modes and recorded the worst case results in this report (TX (3Mbps)). Emission level (dBuV/m) = 20 log Emission level (uV/m). Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

46.50

46.50

46.50

29.14

29.12

25.32

200

200

100

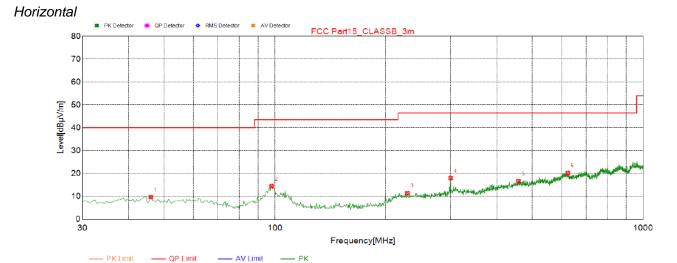
227

266

244

Vertical

Vertical


Vertical

-12.81

-8.89

-4.71

Susp	ected L	ist						
NO.	Freq. [MHz]	Result Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle[°]	Polarity
1	46.005	9.64	-13.97	40.00	30.36	100	247	Horizontal
2	97.900	14.46	-16.34	43.50	29.04	300	2	Horizontal
3	228.850	11.37	-14.54	46.50	35.13	100	59	Horizontal
4	300.145	17.99	-12.81	46.50	28.51	100	253	Horizontal
5	458.740	16.7	-8.88	46.50	29.80	100	276	Horizontal
6	624.125	20.25	-5.29	46.50	26.25	300	195	Horizontal

***Note:

Pre-scan all modes and recorded the worst case results in this report (TX (3Mbps)). Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Above 1GHz

The worst test result for GFSK, Channel 0 / 2402 MHz

Freq.	Reading	Ant. Fac	Pre.	Cab.	Measured	Limit	Margin				
MHz	dBuv	dB/m	Fac.	Loss	dBuv/m	dBuv/m	dB	Remark	Pol.		
			dB	dB							
4804.00	53.81	33.06	35.04	3.94	55.77	74.00	18.23	Peak	Horizontal		
4804.00	43.29	33.06	35.04	3.94	45.25	54.00	8.75	Average	Horizontal		
4804.00	56.23	33.06	35.04	3.94	58.19	74.00	15.81	Peak	Vertical		
4804.00	40.53	33.06	35.04	3.94	42.49	54.00	11.51	Average	Vertical		

The worst test result for π /4-DQPSK, Channel 0 / 2402 MHz

Freq.	Reading	Ant. Fac	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuv	dB/m	Fac.	Loss	dBuv/m	dBuv/m	dB	Remark	Pol.
			dB	dB					
4804.00	53.30	33.06	35.04	3.94	55.26	74.00	18.74	Peak	Horizontal
4804.00	39.38	33.06	35.04	3.94	41.34	54.00	12.66	Average	Horizontal
4804.00	56.82	33.06	35.04	3.94	58.78	74.00	15.22	Peak	Vertical
4804.00	41.34	33.06	35.04	3.94	43.30	54.00	10.70	Average	Vertical

The worst test result for 8-DPSK, Channel 0 / 2402 MHz

Freq.	Reading	Ant. Fac	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuv	dB/m	Fac.	Loss	dBuv/m	dBuv/m	dB	Remark	Pol.
			dB	dB					
4804.00	56.37	33.06	35.04	3.94	58.33	74.00	15.67	Peak	Horizontal
4804.00	39.83	33.06	35.04	3.94	41.79	54.00	12.21	Average	Horizontal
4804.00	54.71	33.06	35.04	3.94	56.67	74.00	17.33	Peak	Vertical
4804.00	43.74	33.06	35.04	3.94	45.70	54.00	8.30	Average	Vertical

The worst test result for GFSK, Channel 39 / 2441 MHz

Freq.	Reading	Ant. Fac	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuv	dB/m	Fac.	Loss	dBuv/m	dBuv/m	dB	Remark	Pol.
			dB	dB					
4882.00	52.06	33.16	35.15	3.96	54.03	74.00	19.97	Peak	Horizontal
4882.00	41.21	33.16	35.15	3.96	43.18	54.00	10.82	Average	Horizontal
4882.00	57.17	33.16	35.15	3.96	59.14	74.00	14.86	Peak	Vertical
4882.00	42.65	33.16	35.15	3.96	44.62	54.00	9.38	Average	Vertical

The worst test result for $\pi/4$ -DQPSK, Channel 39 / 2441 MHz

Freq.	Reading	Ant. Fac	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuv	dB/m	Fac.	Loss	dBuv/m	dBuv/m	dB	Remark	Pol.
			dB	dB					
4882.00	54.80	33.16	35.15	3.96	56.77	74.00	17.23	Peak	Horizontal
4882.00	42.70	33.16	35.15	3.96	44.67	54.00	9.33	Average	Horizontal
4882.00	53.39	33.16	35.15	3.96	55.36	74.00	18.64	Peak	Vertical
4882.00	42.07	33.16	35.15	3.96	44.04	54.00	9.96	Average	Vertical

The worst test result for 8-DPSK, Channel 39 / 2441 MHz

Freq.	Reading	Ant. Fac	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuv	dB/m	Fac.	Loss	dBuv/m	dBuv/m	dB	Remark	Pol.
			dB	dB					
4882.00	52.49	33.16	35.15	3.96	54.46	74.00	19.54	Peak	Horizontal
4882.00	41.62	33.16	35.15	3.96	43.59	54.00	10.41	Average	Horizontal
4882.00	58.42	33.16	35.15	3.96	60.39	74.00	13.61	Peak	Vertical
4882.00	39.55	33.16	35.15	3.96	41.52	54.00	12.48	Average	Vertical

The worst test result for GFSK, Channel 78 / 2480 MHz

Freq.	Reading	Ant. Fac	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuv	dB/m	Fac.	Loss	dBuv/m	dBuv/m	dB	Remark	Pol.
			dB	dB					
4960.00	54.20	33.26	35.14	3.98	56.30	74.00	17.70	Peak	Horizontal
4960.00	39.54	33.26	35.14	3.98	41.64	54.00	12.36	Average	Horizontal
4960.00	55.34	33.26	35.14	3.98	57.44	74.00	16.56	Peak	Vertical
4960.00	40.30	33.26	35.14	3.98	42.40	54.00	11.60	Average	Vertical

The worst test result for $\pi/4$ -DQPSK, Channel 78 / 2480 MHz

Freq.	Reading	Ant. Fac	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuv	dB/m	Fac.	Loss	dBuv/m	dBuv/m	dB	Remark	Pol.
			dB	dB					
4960.00	59.23	33.26	35.14	3.98	61.33	74.00	12.67	Peak	Horizontal
4960.00	43.27	33.26	35.14	3.98	45.37	54.00	8.63	Average	Horizontal
4960.00	53.57	33.26	35.14	3.98	55.67	74.00	18.33	Peak	Vertical
4960.00	39.78	33.26	35.14	3.98	41.88	54.00	12.12	Average	Vertical

The worst test result for 8-DPSK, Channel 78 / 2480 MHz

Freq.	Reading	Ant. Fac	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuv	dB/m	Fac.	Loss	dBuv/m	dBuv/m	dB	Remark	Pol.
			dB	dB					
4960.00	52.46	33.26	35.14	3.98	54.56	74.00	19.44	Peak	Horizontal
4960.00	39.14	33.26	35.14	3.98	41.24	54.00	12.76	Average	Horizontal
4960.00	57.14	33.26	35.14	3.98	59.24	74.00	14.76	Peak	Vertical
4960.00	43.25	33.26	35.14	3.98	45.35	54.00	8.65	Average	Vertical

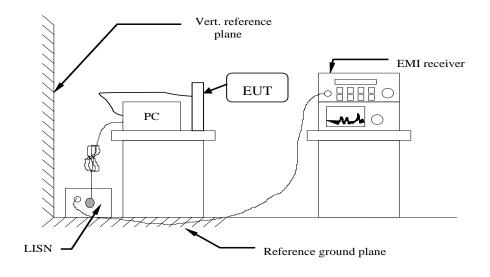
Notes:

1). Measuring frequencies from 9k~10th harmonic (ex. 26GHz), No emission found between lowest internal used/generated frequency to 30 MHz.

2). Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 26GHz) were made with an instrument using Peak detector mode.

3). 18~25GHz at least have 20dB margin. No recording in the test report.

6.7. AC Power line conducted emissions


6.7.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56	56 to 46	
0.50 to 5	56	46	
5 to 30	60	50	

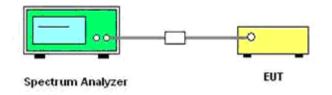
* Decreasing linearly with the logarithm of the frequency

6.7.2 Block Diagram of Test Setup

6.7.3 Test Results

N/A

Can not open Bluetooth when charging.



6.8. Band-edge measurements for radiated emissions

6.8.1 Standard Applicable

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.8.2. Test Setup Layout

6.8.3. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of Spectrum Analyzer.

6.8.4. Test Procedures

According to KDB 412172 section 1.1 Field Strength Approach (linear terms):

 $eirp = p_t x g_t = (E x d)^2/30$

Where:

pt = transmitter output power in watts,

 g_t = numeric gain of the transmitting antenna (unitless),

E = electric field strength in V/m,

d = measurement distance in meters (m).

 $erp = eirp/1.64 = (E \times d)^2/(30 \times 1.64)$

Where all terms are as previously defined.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=1/B for Peak detector.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.
- 6. Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- 7. Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
- Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies ≤ 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).

- 9. For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
- 10. Compare the resultant electric field strength level to the applicable regulatory limit.
- 11. Perform radiated spurious emission test duress until all measured frequencies were complete.

6.8.5. Test Results

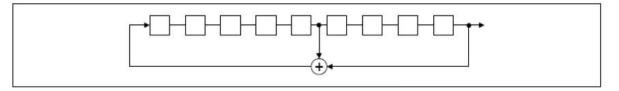
Temperature	22.7°C	Humidity	50%
Test Engineer	Gary Qian	Configurations	BT

Remark:

- 1. Measured at difference Packet Type for each mode and recorded worst case for each mode.
- 2. Worst case data at DH5 for GFSK, 2DH5 for π /4DQPSK, 3DH5 for 8DPSK modulation type;
- 3. Measured at Hopping and Non-Hopping mode, recorded worst at Non-Hopping mode.
- 4. The other emission levels were very low against the limit.
- 5. The average measurement was not performed when the peak measured data under the limit of average detection.
- 6. Detector AV is setting spectrum/receiver. RBW=1MHz/VBW=10Hz/Sweep time=Auto/Detector=Peak;
- 7. Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.
- 8. Plesase See appendix for Band-edge measurements for radiated emissions.

6.9. Pseudorandom frequency hopping sequence

6.9.1 Standard Applicable


For 47 CFR Part 15C sections 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.9.2 EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

0	2	4	6		62 64	78 1	73 75 77
				[

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

6.10. Antenna requirement

6.10.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

6.10.2 Antenna Connected Construction

6.10.2.1. Standard Applicable

According to § 15.203 & RSS-Gen, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

6.10.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 5.00dBi, and the antenna is an internal antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

6.10.2.3. Results: Compliance.

7. TEST SETUP PHOTOGRAPHS

Please refer to separated files for Test Setup Photos of the EUT.

8.EXTERNAL PHOTOS OF THE EUT

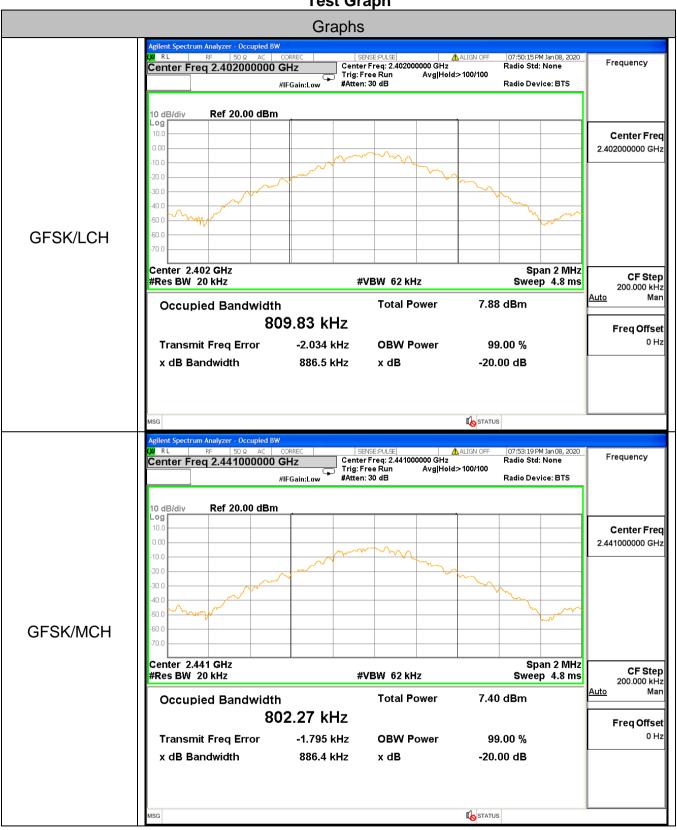
Please refer to separated files for External Photos of the EUT.

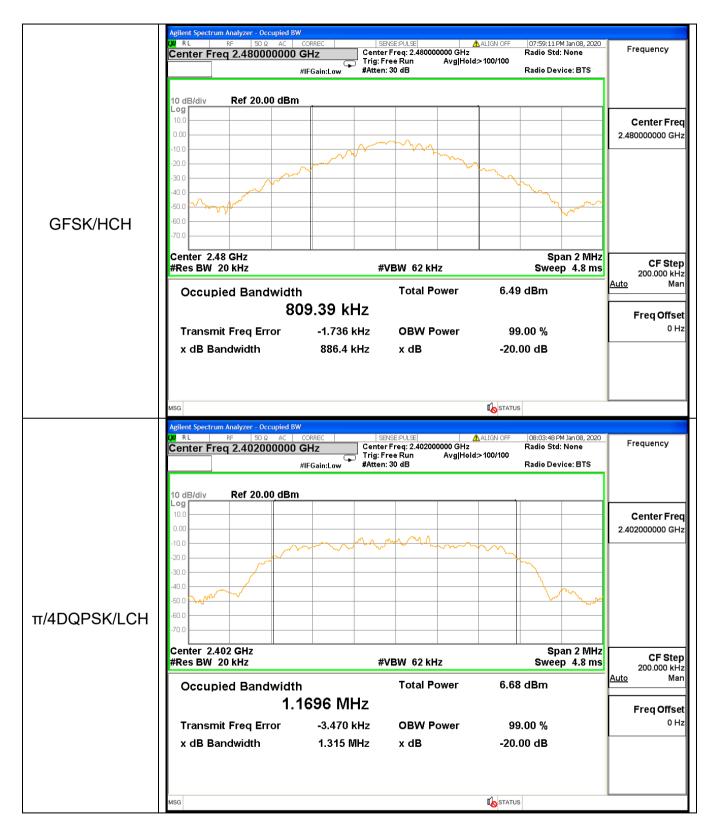
9.INTERIOR PHOTOS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

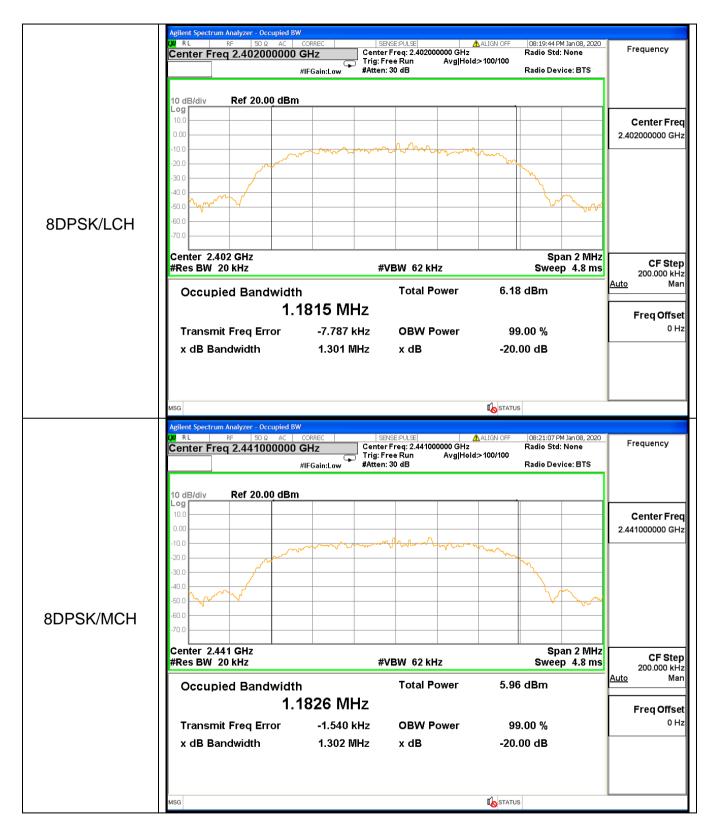
-----THE END OF REPORT------

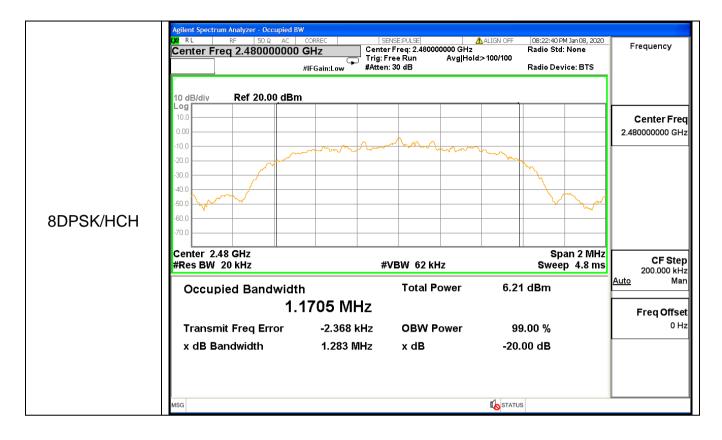
Appendix A RF Test Data for BT(BDR/EDR) (Conducted Measurement) Product Name: Wireless bluetooth earphones Trade Mark: N/A

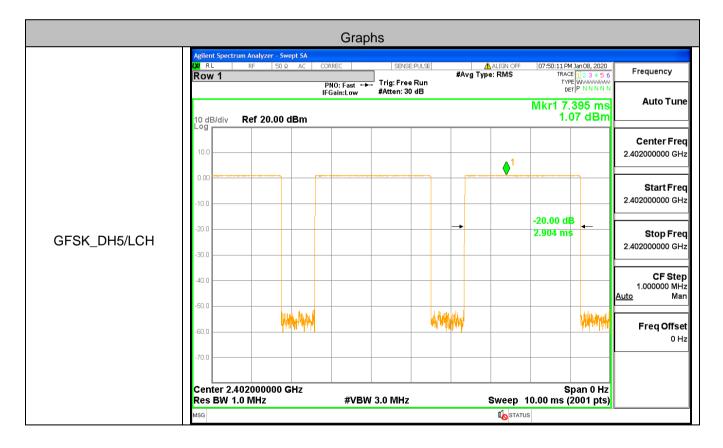

Test Model: F9,T15 FCC ID: 2AVRU-F9

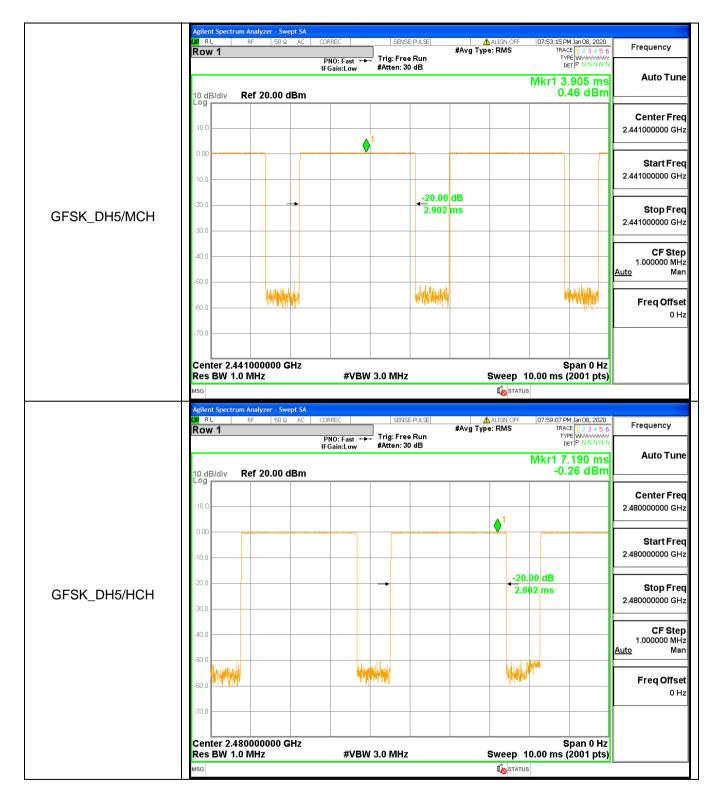

Environmental Conditions

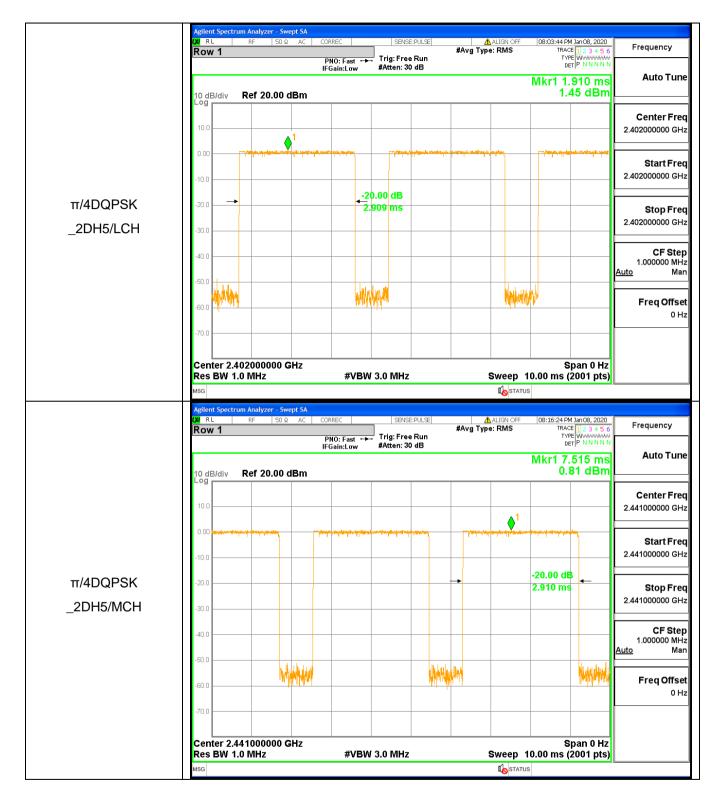
Temperature:	22.7° C	
Relative Humidity:	50%	
ATM Pressure:	100.0 kPa	
Test Engineer:	Gary Qian	
Supervised by:	Eden Hu	

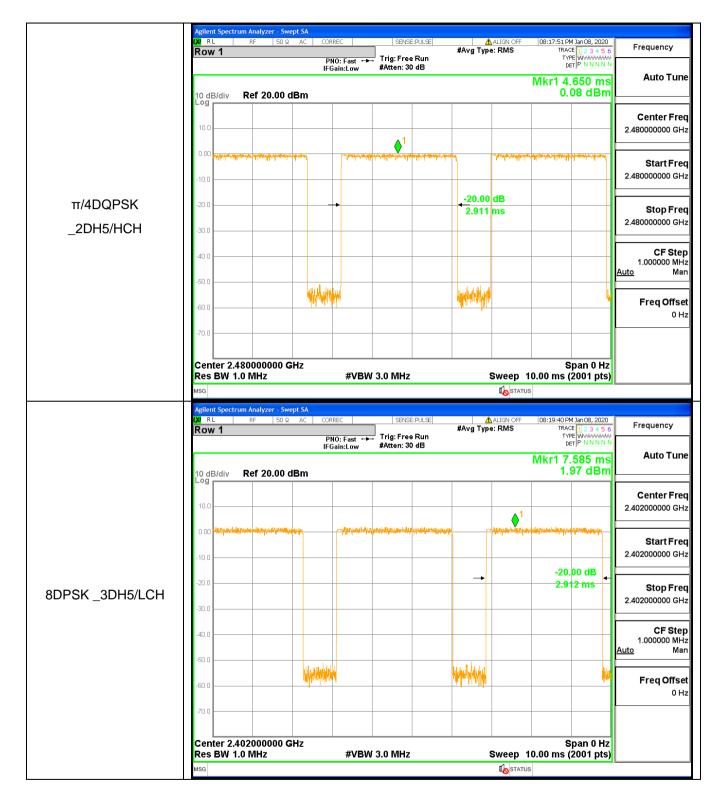

A.1 20 dB Bandwidth

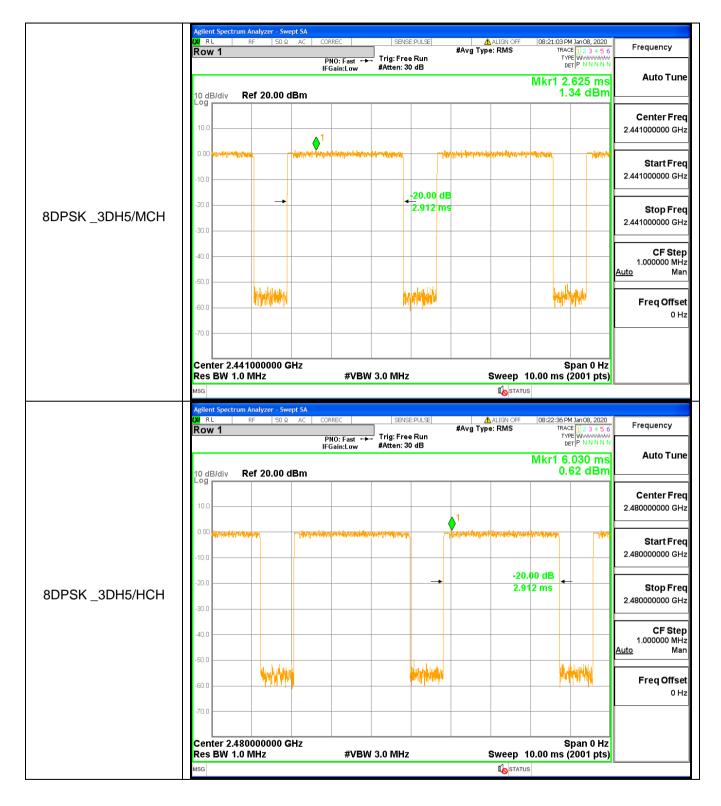

Mode	Channel.	20dB Bandwidth [MHz]	Limit(MHz)	Verdict
GFSK	LCH	0.887	Not Specified	PASS
GFSK	MCH	0.887	Not Specified	PASS
GFSK	HCH	0.886	Not Specified	PASS
π/4DQPSK	LCH	1.315	Not Specified	PASS
π/4DQPSK	MCH	1.250	Not Specified	PASS
π/4DQPSK	HCH	1.253	Not Specified	PASS
8DPSK	LCH	1.301	Not Specified	PASS
8DPSK	MCH	1.302	Not Specified	PASS
8DPSK	HCH	1.283	Not Specified	PASS

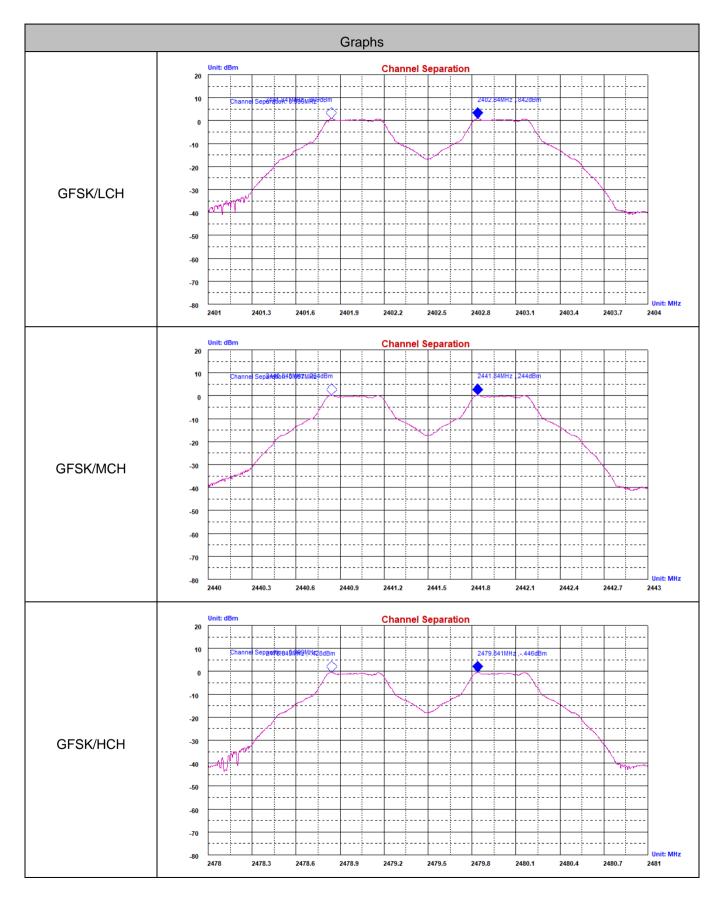


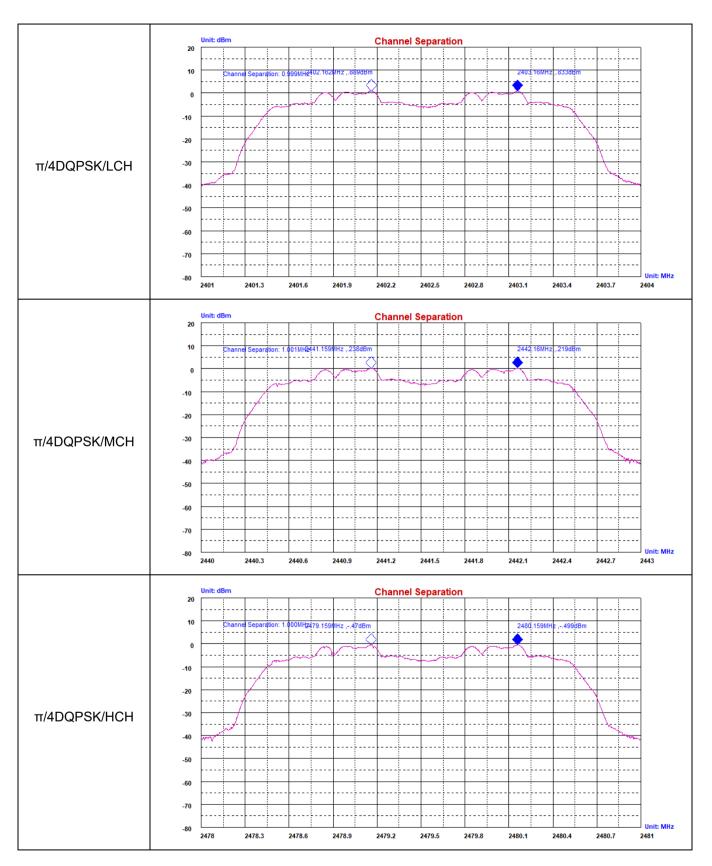


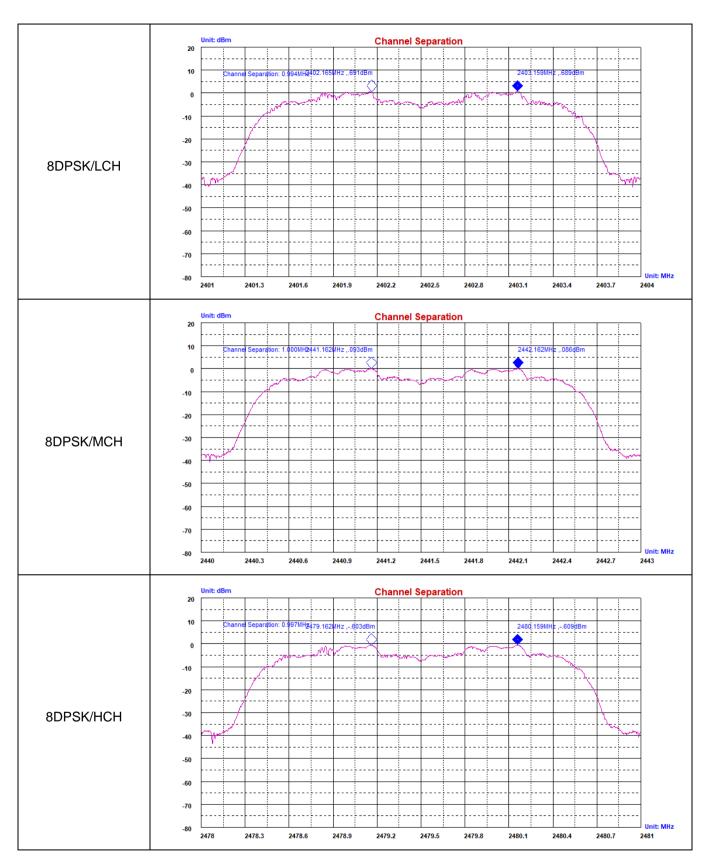



Mode	Packet	Chann el	Burst Width [s/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Limit [s]	Verdic t
GFSK	DH5	LCH	0.002904	106.7	0.309833	0.4	PASS
GFSK	DH5	МСН	0.002902	106.7	0.309634	0.4	PASS
GFSK	DH5	НСН	0.002902	106.7	0.309645	0.4	PASS
π/4DQPSK	2DH5	LCH	0.002909	106.7	0.310379	0.4	PASS
π/4DQPSK	2DH5	МСН	0.002910	106.7	0.31049	0.4	PASS
π/4DQPSK	2DH5	НСН	0.002911	106.7	0.310575	0.4	PASS
8DPSK	3DH5	LCH	0.002912	106.7	0.310702	0.4	PASS
8DPSK	3DH5	МСН	0.002912	106.7	0.310743	0.4	PASS
8DPSK	3DH5	НСН	0.002912	106.7	0.310701	0.4	PASS


A.2 Dwell Time

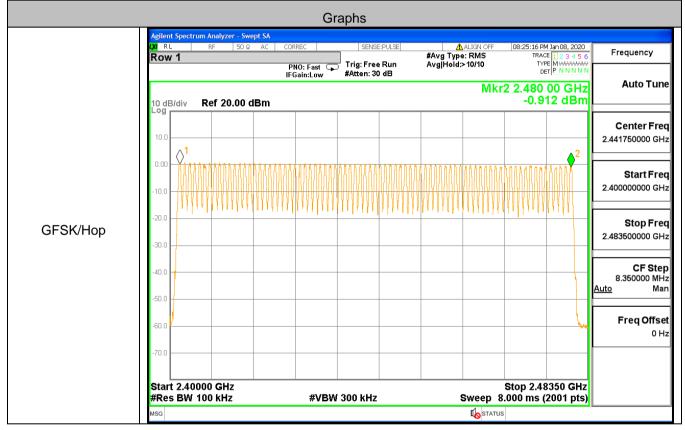


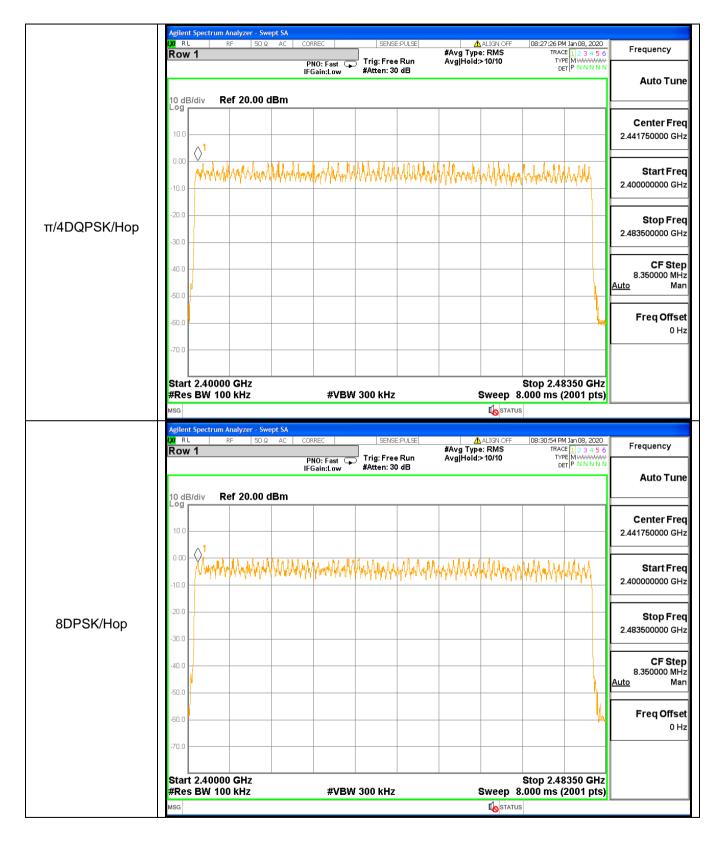




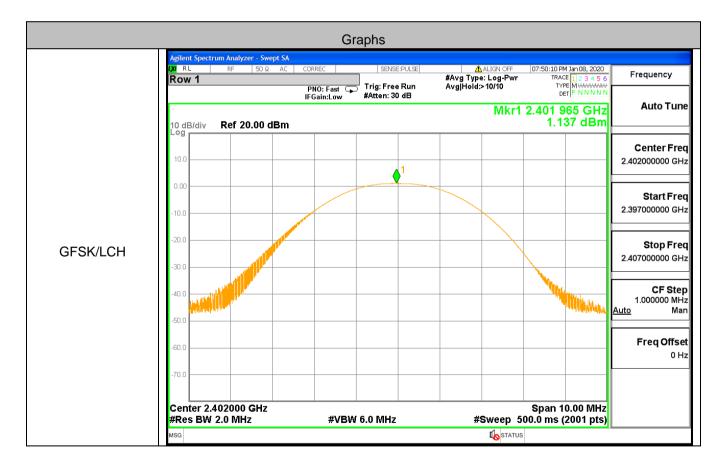
Mode	Channel.	Carrier Frequency Separation [MHz]	Limit [MHz]	Verdict
GFSK	LCH	0.999	0.591	PASS
GFSK	MCH	0.997	0.591	PASS
GFSK	НСН	0.999	0.591	PASS
π/4DQPSK	LCH	0.999	0.877	PASS
π/4DQPSK	MCH	1.001	0.835	PASS
π/4DQPSK	НСН	1.000	0.835	PASS
8DPSK	LCH	0.994	0.870	PASS
8DPSK	MCH	1.000	0.868	PASS
8DPSK	НСН	0.997	0.855	PASS

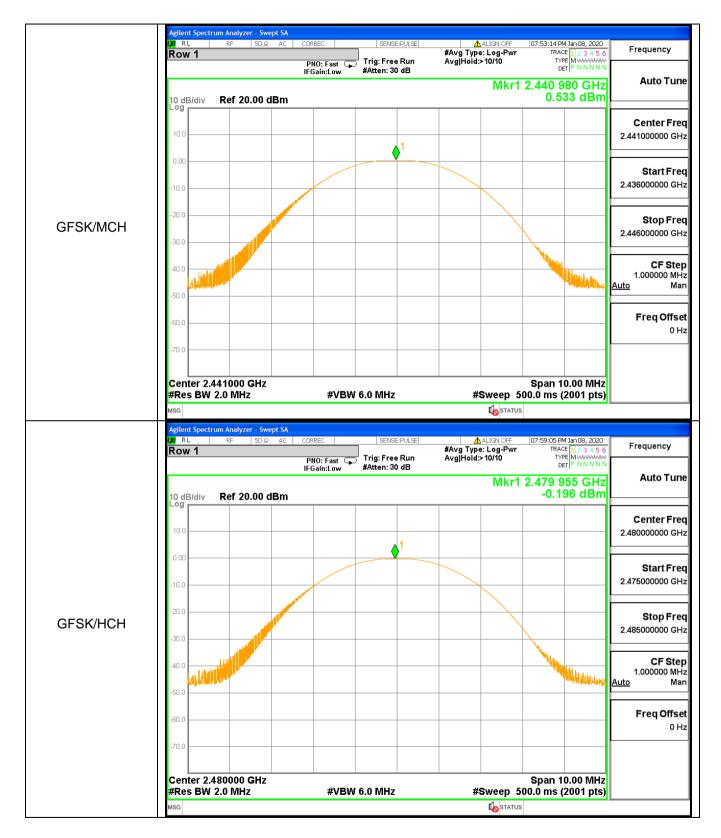
A.3 Carrier Frequency Separation

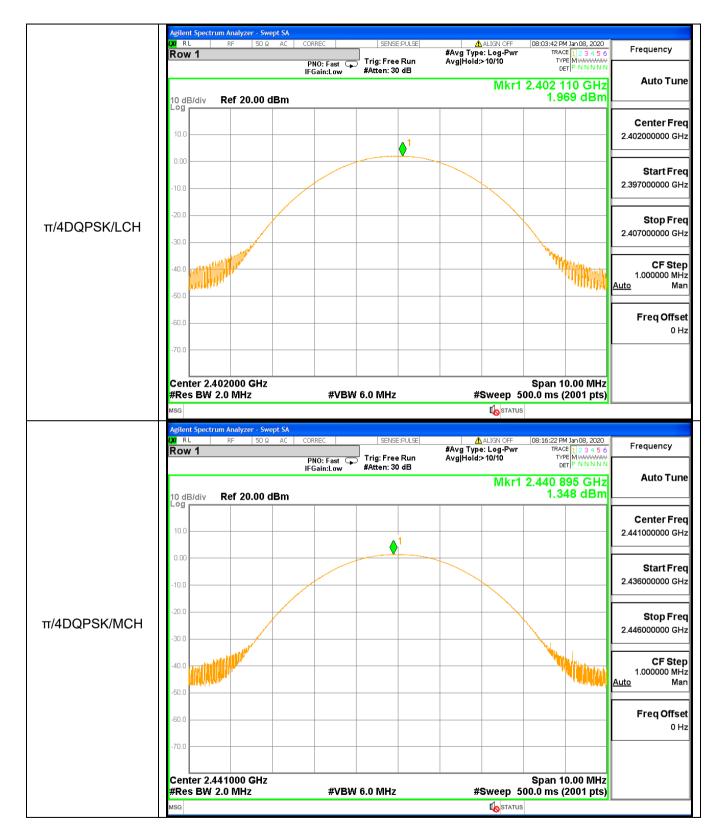


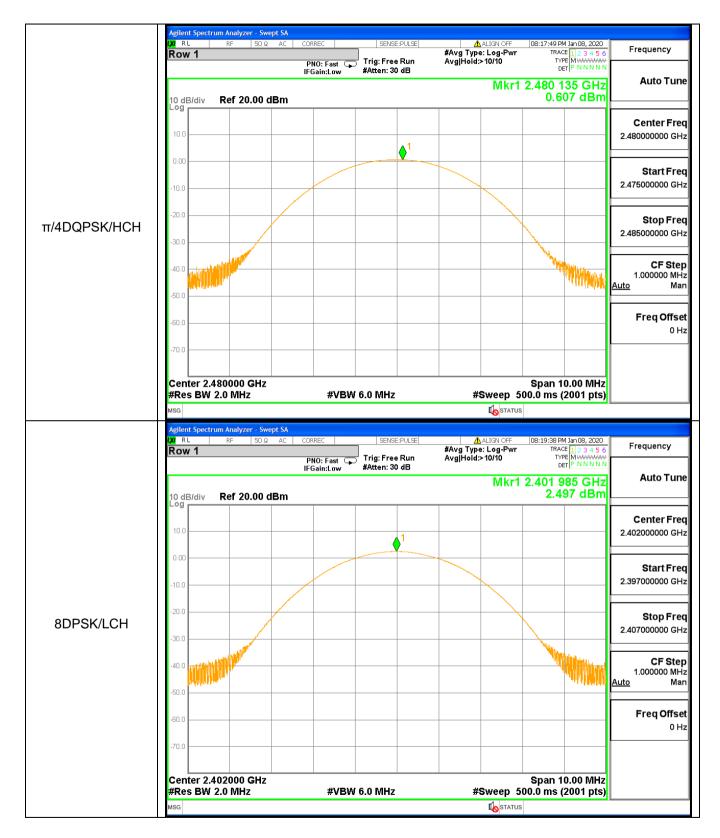


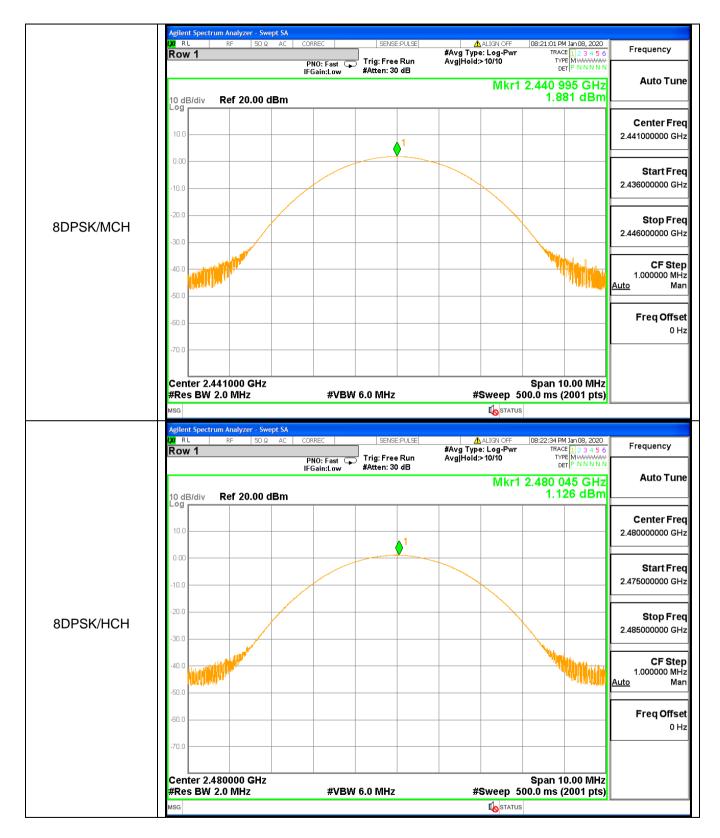
Mode	Channel.	Number of Hopping Channel[N]	Limit[N]	Verdict		
GFSK	Нор	79	>=15	PASS		
π/4DQPSK	Нор	79	>=15	PASS		
8DPSK	Нор	79	>=15	PASS		

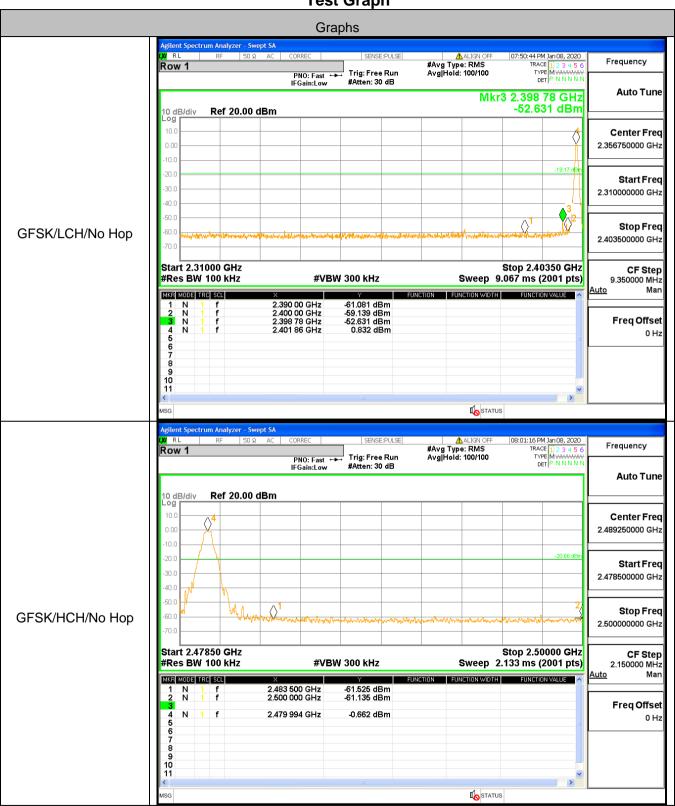

A.4 Hopping Channel Number

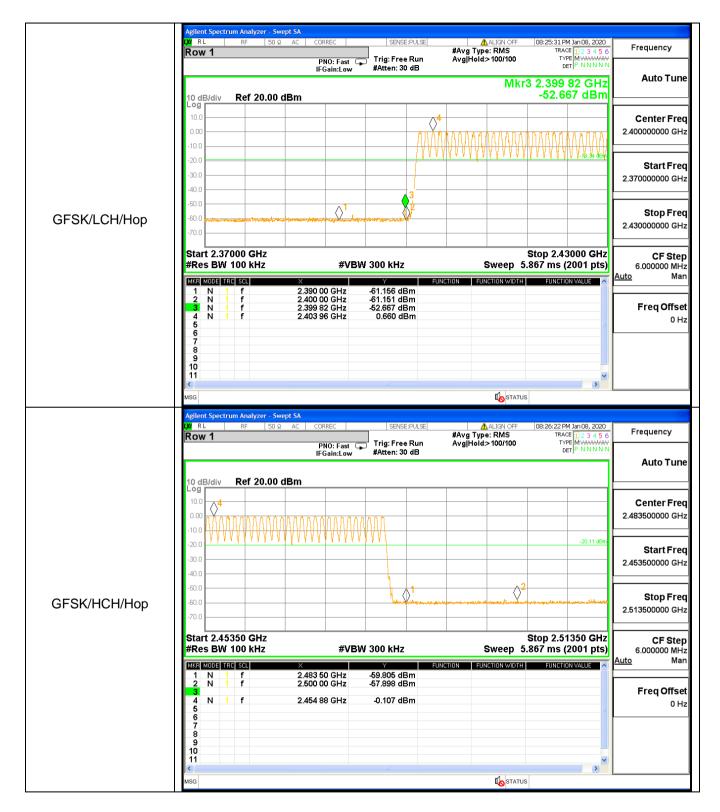




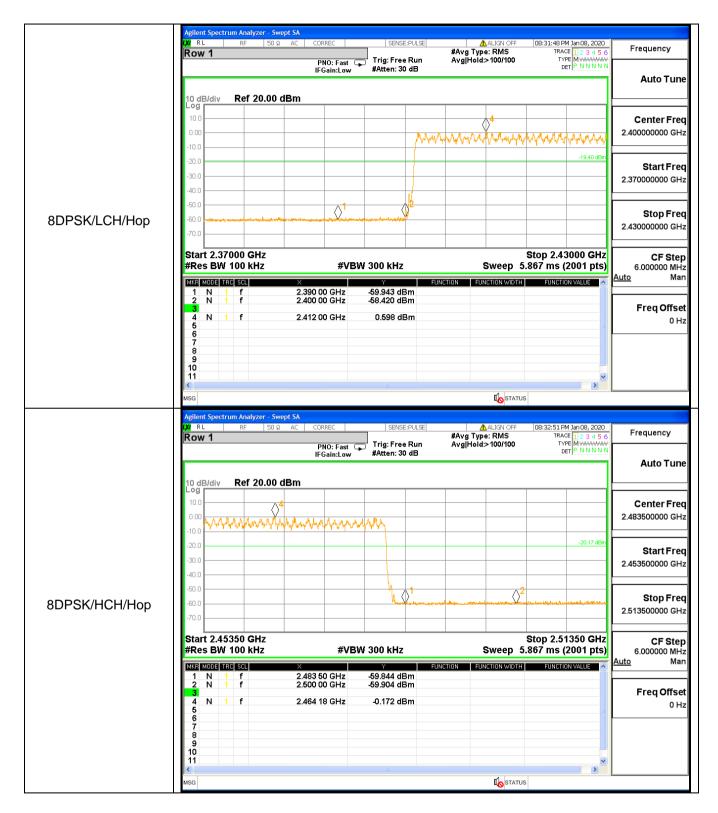

Mode	Channel.	Maximum Peak Output Power [dBm]	Limit [dBm]	Verdict		
GFSK	LCH	1.137	21	PASS		
GFSK	МСН	0.533	21	PASS		
GFSK	НСН	-0.196	21	PASS		
π/4DQPSK	LCH	1.969	21	PASS		
π/4DQPSK	МСН	1.348	21	PASS		
π/4DQPSK	НСН	0.607	21	PASS		
8DPSK	LCH	2.497	21	PASS		
8DPSK	МСН	1.881	21	PASS		
8DPSK	НСН	1.126	21	PASS		

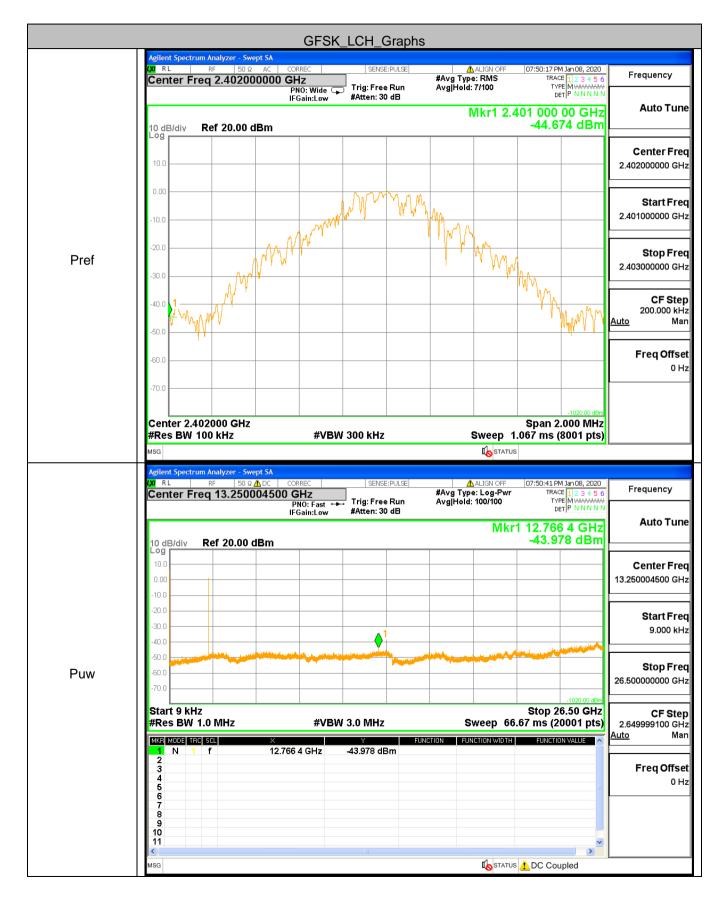

A.5 Conducted Peak Output Power

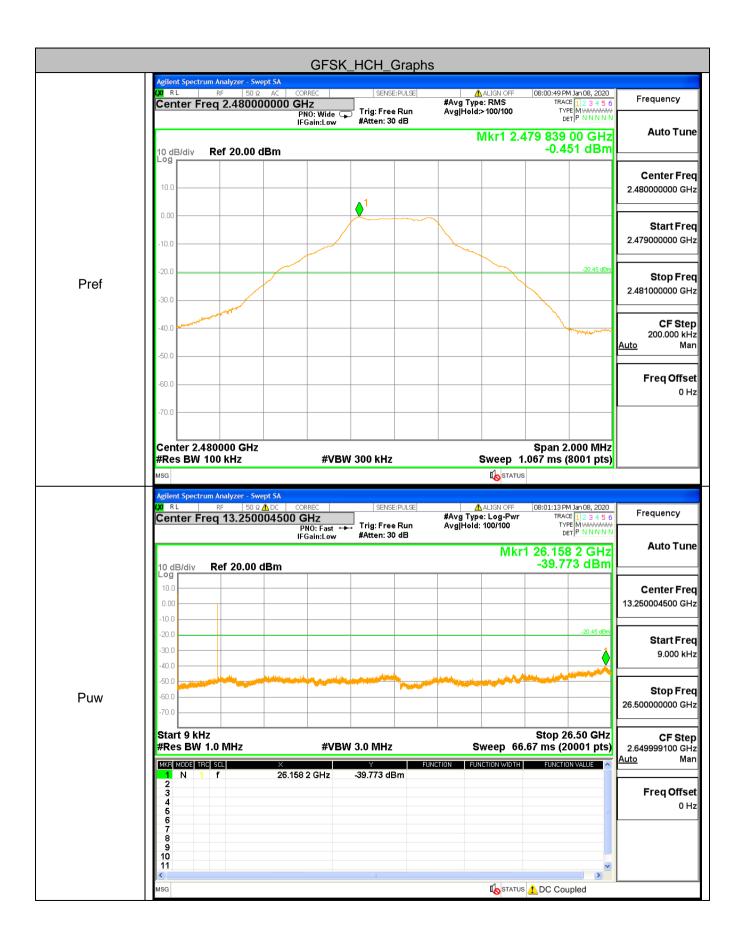



	eage for the ee					
Туре	Carrier Frequency(MHz)	Frequency(MHz)	Carrier Frequency Power [dBm]	Bandedge Peak(dBm)	Upper limit(dBm)	Conclusion
1DH5	2402	2398.778	0.832	-52.631	-19.168	Pass
1DH5	2480	2500	-0.662	-61.14	-20.662	Pass
2DH5	2402	2398.825	-2.242	-55.337	-22.242	Pass
2DH5	2480	2489.981	-0.843	-58.631	-20.843	Pass
3DH5	2402	2400	0.324	-59.07	-19.676	Pass
3DH5	2480	2483.5	-0.582	-61.75	-20.582	Pass
1DH5-Hopping	2402	2399.82	0.66	-52.667	-19.34	Pass
1DH5-Hopping	2480	2500	-0.107	-57.9	-20.107	Pass
2DH5-Hopping	2402	2399.79	0.78	-53.181	-19.22	Pass
2DH5-Hopping	2480	2500	-0.117	-58.59	-20.117	Pass
3DH5-Hopping	2402	2400	0.598	-58.42	-19.402	Pass
3DH5-Hopping	2480	2483.5	-0.172	-59.84	-20.172	Pass

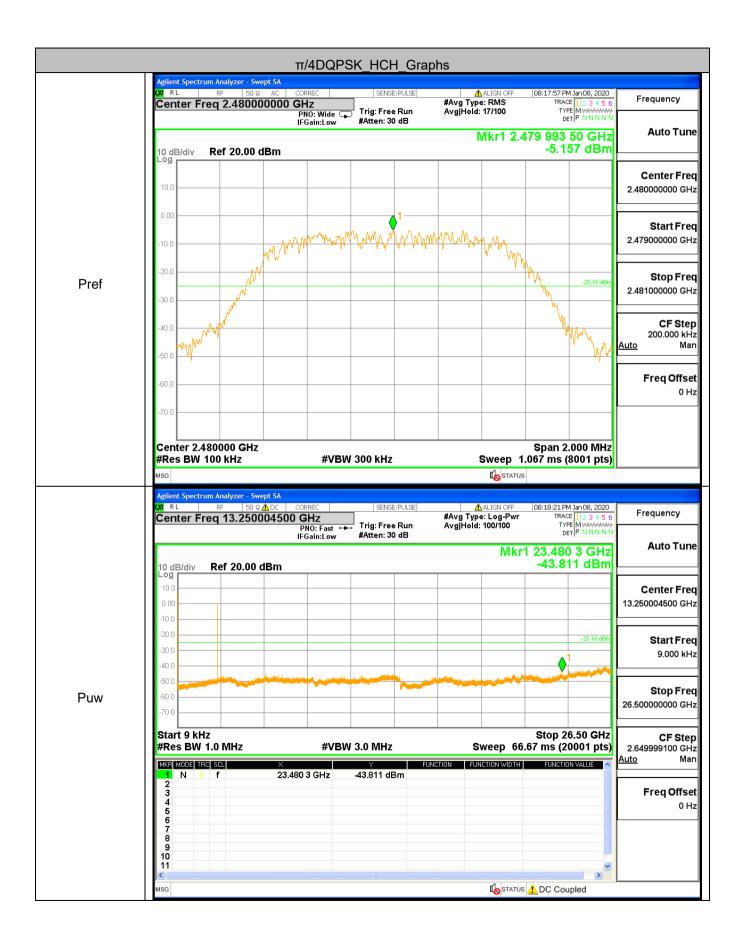
A.6 Band-edge for RF Conducted Emissions

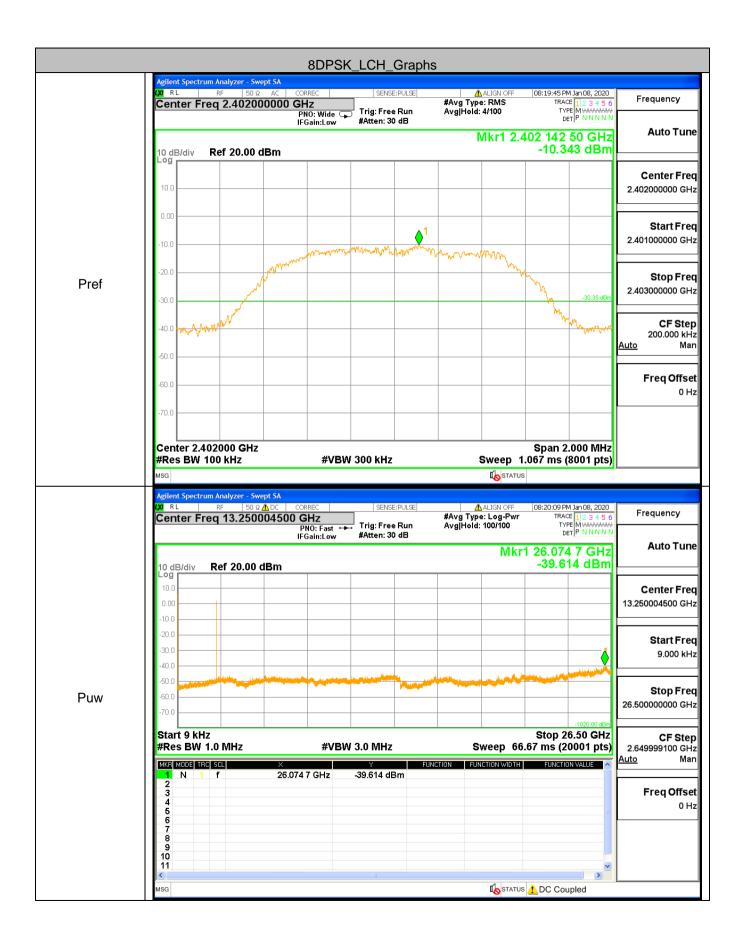


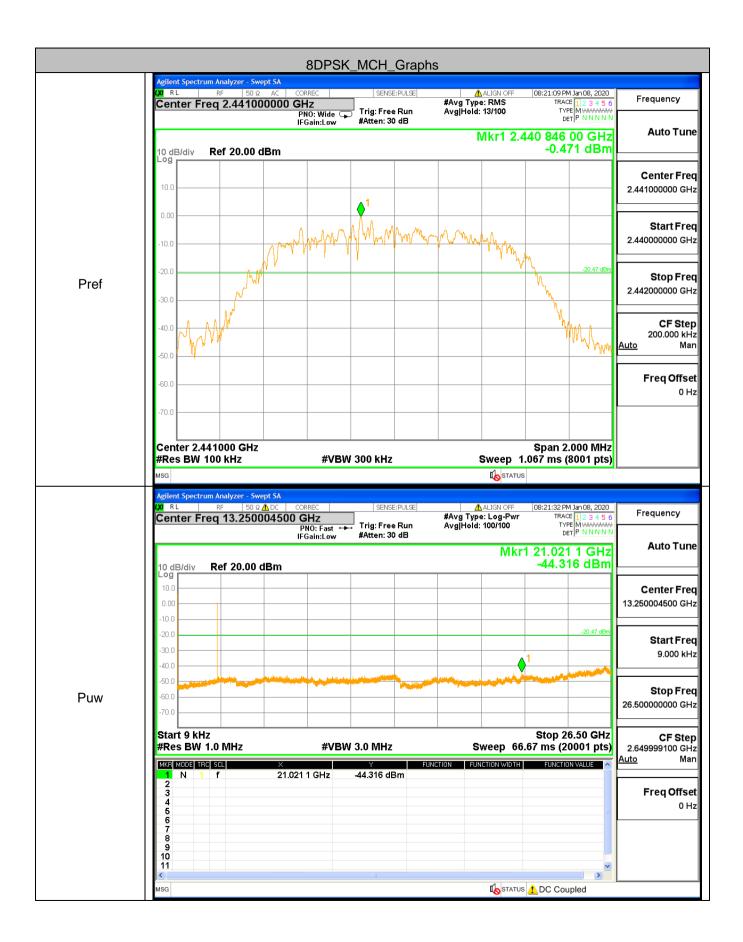

	Agilent Spectrum Analyzer - Swept SA	SENSE:PULSE	ALIGN OFF 08:20:13 PM Jan 08, 2020	- Francisco - Contractor	
	Row 1 PN0: Fast ↔ IFGain:Low	, Trig: Free Run #Atten: 30 dB	#Avg Type: RMS Avg Hold: 100/100 Det P N N N	6 ₩ N	
	10 dB/div Ref 20.00 dBm			Auto Tune	
	Log 10.0 -10.0 -10.0			Center Freq 2.356750000 GHz	
	-20.0		-19.68 dBr	Start Freq 2.310000000 GHz	
8DPSK/LCH/No Hop	-50.0 -60.0 -70.0	ป้องหนุ่มหารณ์ไปหนุ่มหารเป็นตระตุม	adression of the second and the second s	Stop Freq 2.403500000 GHz	
		V 300 kHz	Stop 2.40350 GH Sweep 9.067 ms (2001 pts		
	MKR MODE TRC SGL X 1 N 1 f 2.390 00 GHz 2 N 1 f 2.400 00 GHz 3	-62.499 dBm -59.069 dBm 0.324 dBm		Freq Offset 0 Hz	
	6 7 8 9 10 11				
	MSG		K STATUS		
	Agilent Spectrum Analyzer - Swept SA M RL RF 50 Ω AC CORREC Row 1 PNO: Fast ↔	SENSE:PULSE	ALIGN OFF 08:23:09 PM Jan 08, 2020 #Avg Type: RMS TRACE 12:3:4:5 Avg Hold: 100/100 Type MumuMum bet P N N N	6 Frequency	
	IFGain:Low #Atten: 30 dB DETP NANN				
	10 dB/div Ref 20.00 dBm			Center Freq 2.489250000 GHz	
	-10.0 -20.0 -30.0 -40.0		-20.58 dBr	Start Freq 2.478500000 GHz	
8DPSK/HCH/No Hop	-50.0 V V V	an frank and the second s	2	Stop Freq 2.50000000 GHz	
	MKR MODE TRC SCL ×		Stop 2.50000 GH Sweep 2.133 ms (2001 pts		
	1 N 1 f 2.483 500 GHz 2 N 1 f 2.500 000 GHz 3	-61.748 dBm -62.419 dBm -0.582 dBm		Freq Offset 0 Hz	
	6 7 8 9 10 11				
	MSG				

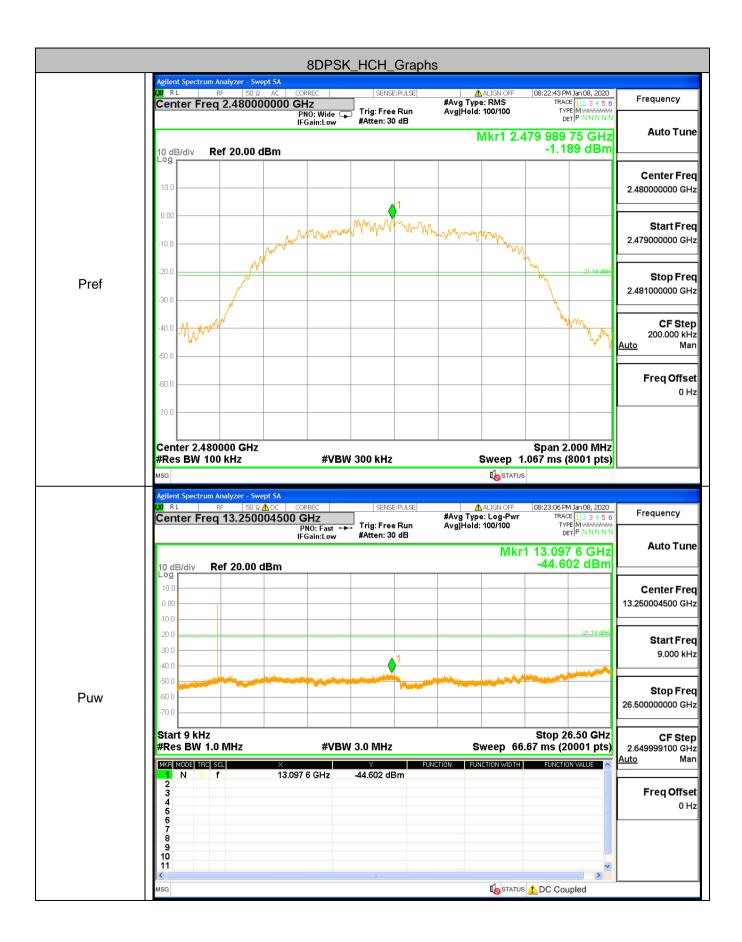

	Agilent Spectrum Analyzer - Swept SA VM RL RF 50 Ω AC CORREC	SENSE:PULSE	ALIGN OFF 08:28:16 PM Jan 08, 2020	Frequency	
	Row 1 PNO: Fast G IFGain:Low	Trig: Free Run #Atten: 30 dB	#Avg Type: RMS Avg Hold:>100/100 Det P N N N N		
	10 dB/div Ref 20.00 dBm		Mkr3 2.399 79 GHz -53.181 dBm	Auto Tune	
			\$	Center Freq	
	-10.0	V V	www.www.	2.400000000 GHz	
	-20.0		-19.22 dBm	Start Freq 2.370000000 GHz	
	-40.0	3		2.370000000 GHZ	
π/4DQPSK/LCH/Hop	-60.0	manana		Stop Freq 2.430000000 GHz	
	Start 2.37000 GHz		Stop 2.43000 GHz	CF Step	
	#Res BW 100 kHz #VBW	/ 300 kHz Y FU	Sweep 5.867 ms (2001 pts)	6.000000 MHz <u>Auto</u> Man	
	1 N 1 f 2.390 00 GHz 2 N 1 f 2.400 00 GHz 3 N 1 f 2.399 79 GHz	-60.846 dBm -57.678 dBm -53.181 dBm		Freq Offset	
	4 N 1 f 2.404 02 GHz 5 6	0.780 dBm		0 Hz	
	7 8 9				
	10 11 <		×		
	MSG		STATUS		
	Agilent Spectrum Analyzer - Swept SA (μ) RL RF 50 Ω AC CORREC Row 1	SENSE:PULSE	▲ ALIGN OFF 08:29:23 PM Jan 08, 2020 #Avg Type: RMS TRACE 123456 Avg Hold:>100/100 TYPE M 4444444	Frequency	
	PNO: Fast IFGain:Low #Atten: 30 dB				
	10 dB/div Ref 20.00 dBm				
		4 . b. 0		Center Freq 2.483500000 GHz	
	-10.0 -20.0		-20.12 dBm		
	-30.0			Start Freq 2.453500000 GHz	
	-50.0		<mark>2</mark>	Stop Freq	
π /4DQPSK/HCH/Hop	-60.0	High and Company and Standard	hag Proper up to a low long part of the set of registry and a bind model of the set of t	2.513500000 GHz	
	Start 2.45350 GHz #Res BW 100 kHz #VBW	/ 300 kHz	Stop 2.51350 GHz Sweep 5.867 ms (2001 pts)	CF Step 6.000000 MHz	
	MKE MODE TRC SCL X 1 N 1 f 2.483 50 GHz		NCTION FUNCTION WIDTH FUNCTION VALUE	<u>Auto</u> Man	
	2 N 1 f 2.500 00 GHz	-58.593 dBm -0.117 dBm		Freq Offset	
	5 6 7			0 Hz	
	8 9 10				
	11 <				
	MSG		LO STATUS		


A.7 RF Conducted Spurious Emissions Test Graph

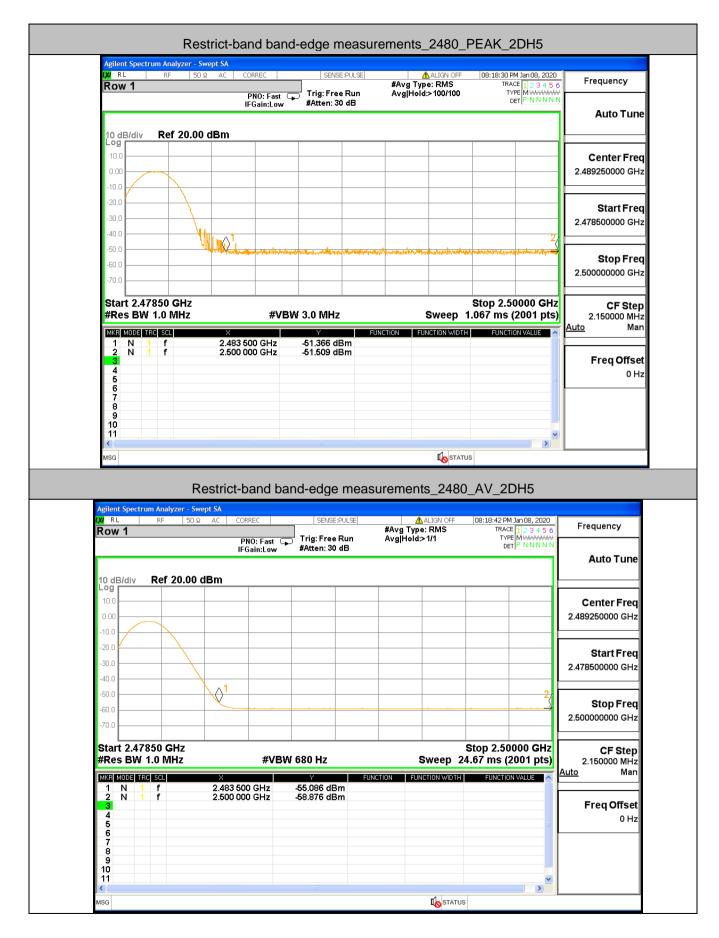








A.8 Restrict-band band-edge measurements


Туре	Carrier Frequency (MHz)	Frequency (MHz)	Gain	Ground Factor	Peak Value(dBm)	E [dBuV/m]	Limit [dBuV/m]	Conclusion
1DH5	2402	2310	5	0.00	-52.149	48.051	74	Pass
1DH5	2480	2483.5	5	0.00	-50.569	49.631	74	Pass
2DH5	2402	2390	5	0.00	-52.715	47.485	74	Pass
2DH5	2480	2483.5	5	0.00	-52.185	48.015	74	Pass
3DH5	2402	2310	5	0.00	-52	48.2	74	Pass
3DH5	2480	2483.746	5	0.00	-43.622	56.578	74	Pass

Туре	Carrier Frequency (MHz)	Frequency(M Hz)	Gain	Ground Factor	Average Value(dBm)	E [dBuV/m]	Limit [dBuV/m]	Conclusion
1DH5	2402	2310	5	0.00	-59.474	40.726	54	Pass
1DH5	2480	2483.5	5	0.00	-55.423	44.777	54	Pass
2DH5	2402	2390	5	0.00	-59.522	40.678	54	Pass
2DH5	2480	2483.5	5	0.00	-55.086	45.114	54	Pass
3DH5	2402	2310	5	0.00	-59.587	40.613	54	Pass
3DH5	2480	2483.746	5	0.00	-55.01	45.19	54	Pass

	rum Analyzer - S					
Row 1	RF 50	Ω AC CORREC	sENSE:PULSE	ALIGN OFF #Avg Type: RMS Avg Hold:>100/100	08:13:43 PM Jan 08, 2020 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N	
		IFGain:Lo	ow #Atten: 30 dB		Denj.	Auto Tu
10 dB/div Log	Ref 20.00) dBm				
10.0						Center Fr
0.00						2.356750000 G
-10.0						
-30.0						Start Fr 2.310000000 G
-40.0					A2 1	2.0100000000
-50.0	nisterritud og brit følget te stra pol	genterioschileren almeit	wheel the second and a second s	entrylytherry allefed a supplied by high restances	siper and a super	Stop Fr
-60.0						2.403500000 G
	1000 GHz				Stop 2.40350 GHz	
	1000 GHZ / 1.0 MHz	#	VBW 3.0 MHz	Sweep	1.067 ms (2001 pts)	CF Sto 9.350000 M
MKR MODE 1		X 2 310 00 CH		FUNCTION FUNCTION WIDT	H FUNCTION VALUE	<u>Auto</u> M
1 N 2 N 3	1 f 1 f	2.310 00 GHz 2.390 00 GHz				Freq Offs
4 5						0
6 7						
8 9						
10 11						
<						
MSG			band-edge mea	surements_2402		
	rum Analyzer - S	wept SA Ω AC CORREC PNO: Fa:	SENSE:PULSE		us	
Agilent Spect	rum Analyzer - S RF 50	wept SA Ω AC CORREC PNO: Fa IFGain:Lo	SENSE:PULSE	surements_2402	US 2_AV_2DH5 08:13:53 PM Jan 08, 2020 TRACE 112 34 5 6 TYPE MWWWWW	
Agilent Spect (X) RL Row 1 10 dB/div Log	rum Analyzer - S	wept SA Ω AC CORREC PNO: Fa IFGain:Lo	SENSE:PULSE	surements_2402	US 2_AV_2DH5 08:13:53 PM Jan 08, 2020 TRACE 112 34 5 6 TYPE MWWWWW	Auto Tu
Agilent Spect	rum Analyzer - S RF 50	wept SA Ω AC CORREC PNO: Fa IFGain:Lo	SENSE:PULSE	surements_2402	US 2_AV_2DH5 08:13:53 PM Jan 08, 2020 TRACE 112 34 5 6 TYPE MWWWWW	
Agilent Spect	rum Analyzer - S RF 50	wept SA Ω AC CORREC PNO: Fa IFGain:Lo	SENSE:PULSE	surements_2402	US 2_AV_2DH5 08:13:53 PM Jan 08, 2020 TRACE 112 34 5 6 TYPE MWWWWW	Auto Tur Center Fra
Agilent Spect	rum Analyzer - S RF 50	wept SA Ω AC CORREC PNO: Fa IFGain:Lo	SENSE:PULSE	surements_2402	US 2_AV_2DH5 08:13:53 PM Jan 08, 2020 TRACE 112 34 5 6 TYPE MWWWWW	Auto Tur Center Fro 2.356750000 G Start Fro
Agilent Spect	rum Analyzer - S RF 50	wept SA Ω AC CORREC PNO: Fa IFGain:Lo	SENSE:PULSE	surements_2402	US 2_AV_2DH5 08:13:53 PM Jan 08, 2020 TRACE 112 34 5 6 TYPE MWWWWW	Auto Tur Center Fro 2.356750000 G
Agilent Spect (X) RL Row 1 Log 10.0 -10.0 -20.0 -30.0	rum Analyzer - S RF 50	wept SA Ω AC CORREC PNO: Fa IFGain:Lo	SENSE:PULSE	surements_2402	US 2_AV_2DH5 108:13:53 PM Jan 08, 2020 TRACE 12 3 4 5 6 TYPE M VANAWAY DET P NNNNN	Auto Tur Center Fr 2.356750000 G Start Fr 2.310000000 G
Agilent Spect 22 RL Row 1 10 dB/div Log 10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0	rum Analyzer - S RF 50	wept SA Ω AC CORREC PNO: Fa IFGain:Lo	SENSE:PULSE	surements_2402	US 2_AV_2DH5 08:13:53 PM Jan 08, 2020 TRACE 112 34 5 6 TYPE MWWWWW	Auto Tur Center Fro 2.356750000 G Start Fro
Agilent Spect (X) RL ROW 1 10 dB/div 0.00 -10.0 -20.0 -30.0 -40.0 -50.0	rum Analyzer - S RF 50	wept SA Ω AC CORREC PNO: Fa IFGain:Lo	SENSE:PULSE	surements_2402	US 2_AV_2DH5 108:13:53 PM Jan 08, 2020 TRACE 12 3 4 5 6 TYPE M VANAWAY DET P NNNNN	Auto Tur Center Fro 2.356750000 G Start Fro 2.310000000 G Stop Fro
Agilent Spect	rum Analyzer - S RF 50 Ref 20.00 	wept SA Q AC CORREC PNO: Far IFGain:Lo D dBm	SENSE:PULSE	surements_2402	US 2_AV_2DH5 08:13:53 PM Jan 08, 2020 TRACE 12 3 4 5 6 TYPE M MANAGE DET P NNNNN 2 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	Auto Tur Center Fro 2.356750000 G Start Fro 2.310000000 G Stop Fro 2.403500000 G
Agilent Spect XI RL Row 1 10.0 0.00 -10.0 -20.0 -30.0 -40.0 -50.0 -40.0 -50.0 -50.0 -50.0 -70.0 Start 2.3 #Res BW	Ref 20.00 Ref 20.00 10000 GHz 1000 GHz	wept SA Q AC CORREC PNO: Far IFGain:Lo D dBm	SENSE:PULSE Trig: Free Run #Atten: 30 dB	Surements_2402	US 2_AV_2DH5 IRACE I 2 3 4 5 6 TYPE MUMUMUM DET P NNNNN DET P NNNNNN DET P NNNNN DET P NNNNN D T D D D D D D D D D D D D D D D D D D	Auto Tur Center Fro 2.356750000 Gi Start Fro 2.310000000 Gi Stop Fro 2.403500000 Gi
Agilent Spect	Ref 20.00 Ref 20.00 1000 GHz 1.0 MHz	wept SA Q AC CORREC PNO: Far IFGain:Lo D dBm	SENSE:PULSE Trig: Free Run #Atten: 30 dB	Surements_2402	US 2_AV_2DH5 IRACE 123456 TYPE MINNER, 2020 IRACE 123456 TYPE MINNER DET PINNEN DET	Auto Tur Center Fro 2.356750000 Gi Start Fro 2.310000000 Gi Stop Fro 2.403500000 Gi CF Sto 9.350000 Mi Auto M
Agilent Spect X/ RL Row 1 10 dB/div Cog 10.0 -10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -40.0 -50.0 -50.0 -70.0 Start 2.3 #Res BW MIKE MODE 1 N 2 N 3 4	Ref 20.00 Ref 20.00 10000 GHz 1000 GHz	wept SA Ω AC CORREC PNO: Fa IFGain:Lo D dBm 	SENSE:PULSE Trig: Free Run #Atten: 30 dB	Surements_2402	US 2_AV_2DH5 IRACE I 2 3 4 5 6 TYPE MUMUMUM DET P NNNNN DET P NNNNNN DET P NNNNN DET P NNNNN D T D D D D D D D D D D D D D D D D D D	Auto Tur Center Fro 2.356750000 Gi Start Fro 2.310000000 Gi Stop Fro 2.403500000 Gi 9.350000 Mi Auto Freq Offs
Agilent Spect X/ RL Row 1 10 dB/div Cog 10.0 -10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -40.0 -50.0 -50.0 -70.0 Start 2.3 #Res BW MIKE MODE 1 N 2 N 3 4	Ref 20.00 Ref 20.00 1000 GHz 1.0 MHz	wept SA Ω AC CORREC PNO: Fa IFGain:Lo D dBm 	SENSE:PULSE Trig: Free Run #Atten: 30 dB	Surements_2402	US 2_AV_2DH5 IRACE I 2 3 4 5 6 TYPE MUMUMUM DET P NNNNN DET P NNNNNN DET P NNNNN DET P NNNNN D T D D D D D D D D D D D D D D D D D D	Auto Tur Center Fro 2.356750000 Gi Start Fro 2.310000000 Gi Stop Fro 2.403500000 Gi CF Sto 9.350000 Mi Auto M
Agilent Spect XI RL Row 1 10.0 0.00 -10.0 -20.0 -30.0 -40.0 -30.0 -40.0 -50.0 -40.0 -50.0 -70.0 Start 2.3 #Res BW XIR MODE 1 1 N 2 N 3 4 5 6 7 8	Ref 20.00 Ref 20.00 1000 GHz 1.0 MHz	wept SA Ω AC CORREC PNO: Fa IFGain:Lo D dBm 	SENSE:PULSE Trig: Free Run #Atten: 30 dB	Surements_2402	US 2_AV_2DH5 IRACE I 2 3 4 5 6 TYPE MUMUMUM DET P NNNNN DET P NNNNNN DET P NNNNN DET P NNNNN D T D D D D D D D D D D D D D D D D D D	Auto Tur Center Fro 2.356750000 Gi Start Fro 2.310000000 Gi Stop Fro 2.403500000 Gi 9.350000 Mi Auto Freq Offs
Agilent Spect X/ RL Row 1 10 dB/div Cog 10.0 -10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -40.0 -50.0 -50.0 -70.0 Start 2.3 #Res BW MIKE MODE 1 N 2 N 3 4	Ref 20.00 Ref 20.00 1000 GHz 1.0 MHz	wept SA Ω AC CORREC PNO: Fa IFGain:Lo D dBm 	SENSE:PULSE Trig: Free Run #Atten: 30 dB	Surements_2402	US 2_AV_2DH5 IRACE I 2 3 4 5 6 TYPE MUMUMUM DET P NNNNN DET P NNNNNN DET P NNNNN DET P NNNNN D T D D D D D D D D D D D D D D D D D D	Auto Tur Center Fro 2.356750000 Gi Start Fro 2.310000000 Gi Stop Fro 2.403500000 Gi 9.350000 Mi Auto Freq Offs

	- Swept SA 50 Ω AC CORREC	SENSE:PULSE	ALIGN OFF	08:23:15 PM Jan 08, 2020	Frequency
Row 1	PNO: Fast	Trig: Free Run #Atten: 30 dB	#Avg Type: RMS Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE M WWWWWW DET P N N N N N	Frequency
	IFGain:Low	#Atten: 30 dB	Mkr3	2.483 746 GHz	Auto Tur
10 dB/div Ref 20.0)0 dBm			-43.622 dBm	
10.0					Center Fre
-10.0					2.489250000 GH
-20.0					Start Era
-30.0	▲3				Start Fre 2.478500000 G⊢
-40.0				2	
-50.0	and the second s	≌≠৻৻৾৻৾৵ঢ়ড়৻ঀৼ৽য়৸৾৾৽৾৵৾ঀ৾৽ৼ৽৾৾ঀ৽ৼ৾৾৾৶৻৽৾৽৾৾৽ৼ৾৾৽	ก้องสูงหมู่ไปแห่งของการสี่งหมู่ไข่งมายไม่ได้ 	ĨŢĊŔŧŔĊĊĹĸţĊŦĸġŊŢĿĸĸŔŢŎŖĸĬŖĬĬŢĿĸĬŔĬŔŢŎ	Stop Fre
-70.0					2.500000000 GH
Start 2.47850 GHz				Stop 2.50000 GHz	CF Ste
#Res BW 1.0 MHz	#VE	W 3.0 MHz	Sweep 1	.067 ms (2001 pts)	2.150000 MH <u>Auto</u> Ma
1 N 1 f 2 N 1 f	2.483 500 GHz 2.500 000 GHz	-52.509 dBm -52.027 dBm	PORCHON WIDTH	PONCTION VALUE	
3 N 1 f 4	2.483 746 GHz	-43.622 dBm			Freq Offse 0 H
5 6 7					
8					
10					
×				>	
MSG					
	Restrict-band ba	and-edge meas	urements_2480	3	L
Agilent Spectrum Analyzer -	<mark>Swept SA</mark> ΙΟ Ω AC CORREC	SENSE:PULSE Trig: Free Run #Atten: 30 dB	,	3	Frequency
Agilent Spectrum Analyzer VI RL RF 5 Row 1	Swept SA Ο Ω AC CORREC PNO: Fast C IFGain:Low	SENSE:PULSE	urements_2480	AV_3DH5	
Agilent Spectrum Analyzer - y RL RF 5 Row 1 10 dB/div Ref 20.0	Swept SA Ο Ω AC CORREC PNO: Fast C IFGain:Low	SENSE:PULSE	urements_2480	AV_3DH5	Auto Tune
Agilent Spectrum Analyzer - XI RL RF 5 Row 1 10 dB/div Ref 20.0	Swept SA Ο Ω AC CORREC PNO: Fast C IFGain:Low	SENSE:PULSE	urements_2480	AV_3DH5	Auto Tune Center Free
Agilent Spectrum Analyzer - 20 RL RF 5 Row 1 10 dB/div Ref 20.0 10.0 0.00 -10.0	Swept SA Ο Ω AC CORREC PNO: Fast C IFGain:Low	SENSE:PULSE	urements_2480	AV_3DH5	Auto Tune Center Free
Agilent Spectrum Analyzer - X RL RF 5 Row 1 10 dB/div Ref 20.0 0.00 -10.0 -20.0	Swept SA Ο Ω AC CORREC PNO: Fast C IFGain:Low	SENSE:PULSE	urements_2480	AV_3DH5	Auto Tune Center Frec 2.489250000 GHz Start Frec
Agilent Spectrum Analyzer - W RL RF 5 Row 1 10 dB/div Ref 20.0 10.0 0.00 -10.0	Swept SA 0 Q AC CORREC PN0: Fast C IFGain:Low 10 dBm	SENSE:PULSE	urements_2480	AV_3DH5	Auto Tune Center Frec 2.489250000 GHz Start Frec
Agilent Spectrum Analyzer - XI RL RF S Row 1 10 dB/div Ref 20.0 0.00 -10.0 -20.0 -30.0 -40.0 -50.0	Swept SA Ο Ω AC CORREC PNO: Fast C IFGain:Low	SENSE:PULSE	urements_2480	AV_3DH5	Auto Tune Center Free 2.489250000 GH: Start Free 2.478500000 GH:
Agilent Spectrum Analyzer - XI RL RF 5 Row 1	Swept SA 0 Q AC CORREC PN0: Fast C IFGain:Low 10 dBm	SENSE:PULSE	urements_2480	AV_3DH5	Auto Tune Center Frec 2.489250000 GH; Start Frec 2.478500000 GH; Stop Frec
Agilent Spectrum Analyzer - X RL RF 5 Row 1	Swept SA 0 Q AC CORREC PN0: Fast C IFGain:Low 10 dBm	SENSE:PULSE	ALIGN OFF	AV_3DH5	Auto Tune Center Frec 2.489250000 GH Start Frec 2.478500000 GH Stop Frec 2.500000000 GH
Agilent Spectrum Analyzer - XI RL RF 5 Row 1 10 dB/div Ref 20.0 0.00 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0	Swept SA 0 Q AC CORREC PN0: Fast C IFGain:Low 0 dBm	SENSE:PULSE	ALIGN OFF #Avg Type: RMS Avg Hold>1/1	AV_3DH5	Auto Tune Center Frec 2.489250000 GH; 2.478500000 GH; 2.478500000 GH; 2.500000000 GH; 2.500000000 GH; 2.500000000 GH; 2.500000000 GH;
Agilent Spectrum Analyzer - OX RE S R L RF S Row 1 Ref 20.0	Swept SA D Q AC CORREC PN0: Fast C IFGain:Low 0 dBm 1 1 4 #VB	SENSE:PULSE Trig: Free Run #Atten: 30 dB	ALIGN OFF #Avg Type: RMS Avg Hold>1/1	AV_3DH5	Auto Tune Center Free 2.489250000 GH: 2.478500000 GH: 2.478500000 GH: 2.500000000 GH: 2.500000000 GH: 2.500000000 GH: 2.500000000 GH:
Agiient Spectrum Analyzer - (X) RL RF S Row 1 10 dB/div Ref 20.0 10.0 0.00 -10.0 -20.0 -30.0 -40.0 -50.0 -50.0 -70.0 Start 2.47850 GHz #Res BW 1.0 MHz	Swept SA D Q AC CORREC PNO: Fast C IFGain:Low D dBm 1 1 1 4 #VB	SENSE:PULSE	surements_2480.	AV_3DH5	Auto Tune Center Free 2.489250000 GH: Start Free 2.478500000 GH: 2.4785000000 GH: 2.500000000 GH: 2.500000000 GH: 2.500000000 GH: 2.150000 MH: Auto Mar
Agilent Spectrum Analyzer - (M) RL RF 5 Row 1 10 dB/div Ref 20.0 -00 -00 -00 -00 -00 -00 -00	Swept SA 0 Q AC CORREC PN0: Fast IFGain:Low 00 dBm I 1 I 1 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I	SENSE:PULSE Trig: Free Run #Atten: 30 dB	surements_2480.	AV_3DH5	Auto Tune Center Free 2.489250000 GH: 2.478500000 GH: 2.478500000 GH: 2.500000000 GH: 2.500000000 GH: 2.50000000 GH: 2.150000 MH: Auto Mar Freq Offse
Agilent Spectrum Analyzer - (M) RL RF 5 Row 1 10 dB/div Ref 20.0 -00 -00 -00 -00 -00 -00 -00	Swept SA 0 Q AC CORREC PN0: Fast IFGain:Low 00 dBm I 1 I 1 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I	SENSE:PULSE Trig: Free Run #Atten: 30 dB	surements_2480.	AV_3DH5	Auto Tune Center Free 2.489250000 GH: 2.478500000 GH: 2.478500000 GH: 2.500000000 GH: 2.500000000 GH: 2.50000000 GH: 2.150000 MH: Auto Mar Freq Offse
Agilent Spectrum Analyzer - XY RL RF 5 Row 1	Swept SA 0 Q AC CORREC PN0: Fast IFGain:Low 00 dBm I 1 I 1 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I	SENSE:PULSE Trig: Free Run #Atten: 30 dB	surements_2480.	AV_3DH5	Auto Tune Center Frec 2.489250000 GH; Start Frec 2.478500000 GH; 2.478500000 GH; 2.478500000 GH; 2.500000000 GH; 2.50000000 GH; 2.50000000 GH; 2.150000 MH; Auto Stop Frec 2.150000 MH; Auto Stop Frec Stop Fr
Image: sector mark Analyzer S RL RF S Row 1 Ref 20.0 S Og 10.0 Ref 20.0 S 10 dB/div Ref 20.0 Ref 20.0 Og 10.0 Ref 20.0 S 20.0 S S 30.0 S S 40.0 S S 50.0 S S 60.0 S S 7 S S	Swept SA 0 Q AC CORREC PN0: Fast C IFGain:Low 0 dBm 1 1 4 4 4 4 2.483 500 GHz	SENSE:PULSE Trig: Free Run #Atten: 30 dB	surements_2480.	AV_3DH5	Auto Tune Center Frec 2.489250000 GH; 2.478500000 GH; 2.478500000 GH; 2.500000000 GH; 2.500000000 GH; 2.500000000 GH; 2.500000000 GH;

EXTERIOR PHOTOGRAPHS OF EUT

Fig.1

Fig.2

This report shall not be reproduced except in full, without the written approval of Shenzhen HUAK Testing Technology Co., Ltd. Page 1 of 5

Shenzhen HUAK Testing Technology Co., Ltd.

Fig.3

Fig.4

This report shall not be reproduced except in full, without the written approval of Shenzhen HUAK Testing Technology Co., Ltd. Page 2 of 5

Fig.5

Fig.6

This report shall not be reproduced except in full, without the written approval of Shenzhen HUAK Testing Technology Co., Ltd. Page 3 of 5

Fig.7

Fig.8

This report shall not be reproduced except in full, without the written approval of Shenzhen HUAK Testing Technology Co., Ltd. Page 4 of 5

Shenzhen HUAK Testing Technology Co., Ltd.

FCC ID: 2AVRU-F9

Fig.9

This report shall not be reproduced except in full, without the written approval of Shenzhen HUAK Testing Technology Co., Ltd. Page 5 of 5

INTERIOR PHOTOGRAPHS OF EUT

Fig.1

Fig.2

This report shall not be reproduced except in full, without the written approval of Shenzhen HUAK Testing Technology Co., Ltd. Page 1 of 3

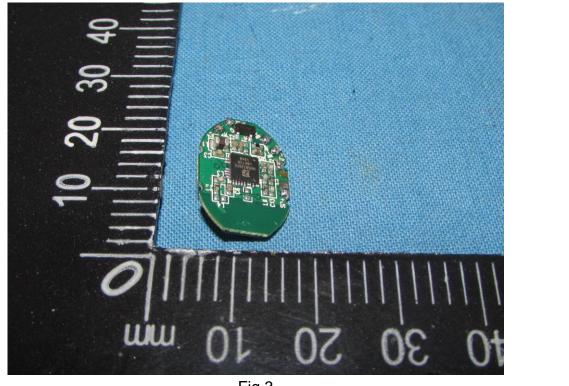


Fig.3

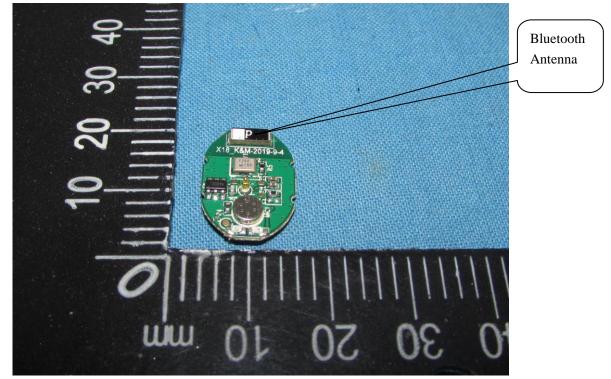


Fig.4

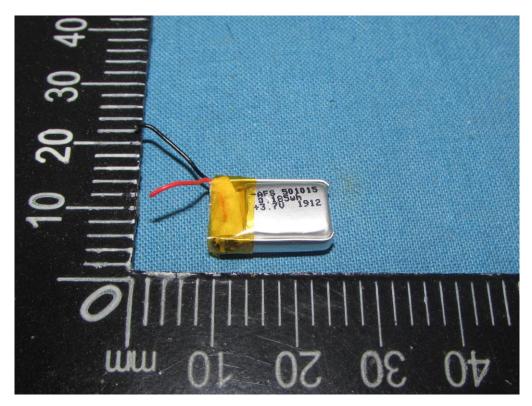


Fig.5

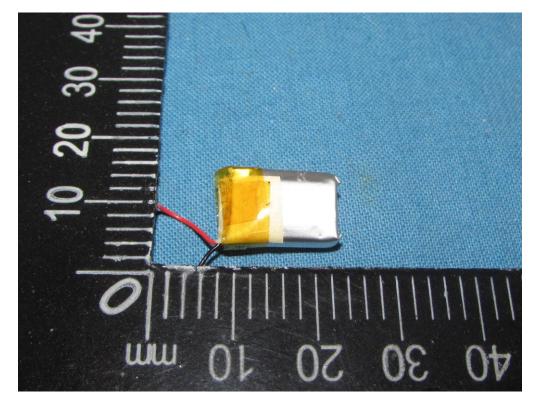


Fig.6

This report shall not be reproduced except in full, without the written approval of Shenzhen HUAK Testing Technology Co., Ltd. Page 3 of 3

TEST SETUP PHOTOS OF THE EUT

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

